9. Herramientas para el diseño de hélices a: propensiones helicoidales, interacciones intrahelicoidales, señales de terminación, empaquetamiento. Agadir. Herramientas para el diseño de láminas beta: propensiones beta, interacciones intracatenarias, giros beta. Empaquetamiento.
Bibliografía:
General
Introduction to Protein Structure. C. Branden & J. Tooze. Garland Publishing, Inc. Nueva York (1991).
Prediction of protein structure and the principles of protein conformation. G.D. Fastan ed. Plenum Press (New York) (1989).
Hélices
ageneral
Stability of a-helices. Chakrabartty A & Baldwin RL. Advances in Protein Chemistry 46: 141-176 (1995).
posiciones internas
Conformational parameters for amino acids in helical, b-sheet, and random coil regions calculated from proteins. Chou PY & Fasman GD. Biochemistry 13: 211-222 (1974)
a-Helix stability in protein. II. Factors that influence stability at an internal position. Horovitz A, Matthews JM & Fersht AR. J. Mol. Biol. 227: 560-568 (1992).
caps
Amino acid preferences for specific locations at the ends of a-helices. Richardson J.S. & Richardson, D.C. Science 240:1648-1652 (1988)
N- and C-capping preferences for all 20 amino acids in a-helical peptides. Doig AJ & Baldwin RL. Prot. Sci. 4: 1325-1336 (1995).
señales de terminación
Helix signals in proteins. Presta, L.G. & Rose G.D. Science 240: 1632-1641 (1988)
Rules for a-helix termination by glycine. Aurora R, Srinivasan R & Rose GD.Science 264: 1126-1130 (1994).
Helix stop signals in proteins and peptides: the capping box. Harper ET & Rose GD.Biochemistry 32: 7605-7609 (1993).
interacciones entre cadenas
Ion-pair and charged hydrogen-bond interactions between histidine and aspartate in a peptide helix
The tryptophan/histidine interaction in a-helices. J. Fernández-Recio, A. Vázquez, C. Civera, P. Sevilla & J. Sancho. J. Mol. Biol. 267: 184-197 (1997)
AGADIR
Muñoz V & Serrano L. 1994. Elucidating the folding problem of helical peptides using empirical parameters. Nature. Structural Biology 1: 399-409.
Láminas beta
Thermodynamic
Context is a major determinant of b-sheet propensity
Measurement of the
A thermodynamic scale for the
Guidelines for protein design: the energetics of b-sheet side chain interactions. Smith CK & Regan L. Science 270: 980-982 (1995).
Intrinsic secondary structure propensities of the amino acids, using statistical phi-psi matrices. Comparison with experimental scales.
Side-chain determinants of
Cross-strand side chain interactions versus turn conformations in
Structural principles of a/b barrel proteins:: the packing of the interior of the sheet. Lesk, A. M., Bränden ,C-I & Chothia, C.Proteins: structure, function and genetics. 5:139-148 (1989)
Giros
Conformation of b-hairpins in protein structures. A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. Sibanda, B.L., Blundell, T.L. & Thorton, J.M. J. Mol. Biol. 206: 759-777 (1989)
Folding dynamics and mechanism of
De novo design and structural analysis of a model
Empaquetamiento
Minor DL Jr & Kim PS. 1996. Context-dependent secondary structure formation of a design protein sequence. Nature 380: 730-734.
Sancho & A.R. Fersht, Disection of an Enzyme by Protein Engineering: the N-and C-Terminal fragments of Barnase form a Native-Like Complex with Restored Enzymic Activity. J. Mol. Biol. 224: 741-747 (1992).