Cuad. de Geogr. • 59 • 47 - 62 • Valencia 1996

MARTÍN DE LUIS
JOSÉ CARLOS GONZÁLEZ-HIDALGO
JUAN RAFAEL SÁNCHEZ *

ANÁLISIS DE LA DISTRIBUCIÓN ESPACIAL DE LA CONCENTRACIÓN DIARIA DE PRECIPITACIONES EN EL TERRITORIO DE LA COMUNIDAD VALENCIANA

RESUMEN

Se calcula y estudia la distribución de la concentración diaria de la precipitación en el territorio de la Comunidad Valenciana según el índice de concentración de lluvia propuesto por Martín Vide (1984) empleando las bases de datos diarias del Atlas Climático de la Comunitat Valenciana (Pérez Cueva, 1994).

El análisis de los resultados sugiere la división del territorio en tres conjuntos latitudinales sobre los que se superpone una gradación costa-interior en tres bandas comprendidas en distancias a la costa de 0-15 km, 15-55 km y > 55 km.

Palabras Clave. Concentración diaria precipitaciones. Comunidad Valenciana

ABSTRACT

Daily rainfall concentration index proposed by Martín Vide (1984) has been analyzed in Comunidad Valenciana (E of Spain), using daily data base of Atlas Climático de la Comunitat Valenciana (Pérez Cueva, 1994). Results suggest an spatial distribution by latitudinal gradient overlapped with latitudinal variation from coast to inland in three sector: 0-15 km, 15-55 km and > 55 km.

Key Words. Daily concentration. Comunidad Valenciana

INTRODUCCIÓN

El estudio de las precipitaciones ocupa un lugar preferente en las investigaciones climáticas realizadas en el litoral mediterráneo español (Cape, 1981). Varias son las razones que se pueden indicar. En primer lugar la presencia de fenómenos extraordinarios y las catástrofes asociadas a los mismos (Martín Vide, 1985; Albentosa, 1989; Gil Olcina, 1989; Mateu, 1990), en segundo lugar la incidencia sobre los procesos de erosión y desertificación del suelo.

En el presente siglo no es raro que durante cortos espacios de tiempo hayan precipitado cantidades ingentes de agua, que han alcanzado cifras asombrosas. Así, por ejem-

* Departamento de Ecología, Universidad de Alicante.
plo, en la Pobla del Duc, durante el mes de noviembre de 1977, se registró una cifra de más de 1.000 mm en 72 horas (no precisada por desbordamiento de los aparatos medidores); durante 24 h se han llegado a alcanzar cantidades de 878 mm en Xàbia (noviembre de 1957) y 817 mm en Oliva (noviembre de 1987); en intervalos menores las cantidades registradas en diferentes puntos hablan por sí solas: durante 5 h precipitaron 230 mm en Abarán (septiembre de 1989), y solamente en 4 horas 185 mm en Cieza, ambas en la Región de Murcia; en intervalos aún menores, 3 horas, se han registrado 600 mm en Zurgena (Andalucía oriental) en el mes de octubre de 1973; durante 2.5 horas se han medido cantidades de 152 mm en Bullas (Región de Murcia) en noviembre de 1988. Precipitaciones superiores a 100 ó 200 mm en 24 horas no son desconocidas en muchos de los observatorios (LÓPEZ BERMÚDEZ, 1990; LÓPEZ BERMÚDEZ y SORIANO, 1993).

La incidencia de tales precipitaciones sobre los procesos de erosión ha sido un tema de interés, en tanto el fenómeno se reconoce de modo generalizado en todas las provincias del litoral. No solamente las condiciones climáticas que recurrentemente producen fuertes aguaceros (gota fría y cambio estacional ligado a la circulación zonal: MARTÍN VIDE, 1987; MIRÓ, 1983; ARMENGOT y PÉREZ CUEVA, 1988; ALBENTOSA, 1989; ARMENGOT, TAMAYO y ALCOVER, 1992; CAMARASA, 1993), sino también condiciones lito-lógicas, topográficas (con su peculiar efecto a su vez sobre los mecanismos de precipitación), y biológicas, configuran un ambiente de elevado riesgo erosivo (LÓPEZ BERMÚDEZ y ALBALADEJO 1990).

El arco mediterráneo peninsular se caracteriza por una escasez e irregularidad de las precipitaciones. La irregularidad es tanto interanual como a lo largo del año, por lo que entre ambas provocan que magnitudes descriptivas como el valor medio anual o mensual carezcan de significación y tengan poca utilidad, además de importantes implicaciones en la evaluación y cálculo del balance de agua, análisis de los recursos hidrológicos, etc.

En el presente trabajo se realiza un estudio de la concentración diaria de las precipitaciones en el conjunto del territorio de la Comunidad Valenciana, localizado en el sector central del arco mediterráneo, sobre el que existe una abundante información previa (QUEREDA, 1974 y 1985; BERNABÉ Y MATEU, 1976; PÉREZ CUEVA, 1983; CHINOR Y LÓPEZ, 1987; GIL ORCINA, 1989; ARMENGOT, TAMAYO y ALCOVER, 1992; CAMARASA, 1993, entre otros muchos), y que ha sido caracterizado en estudios previos como área de transición entre la zona de influencia atlántica y la mediterránea propiamente dicha (MARTÍN VIDE, 1984). Es ánimo de los autores contribuir así a un mejor conocimiento del, por otra parte ya excelente, marco pluviométrico, y abundar en un aspecto que por sus dificultades no ha sido trabajado en detalle hasta hoy día.

EL MARCO PLUVIOMÉTRICO DE LA COMUNIDAD VALENCIANA

De la abundante bibliografía disponible sobre precipitaciones en la Comunidad Valenciana, tres trabajos encuadran la presente investigación. En primer lugar el recientemente publicado *Atlas Climático de la Comunidad Valenciana* (PÉREZ CUEVA, 1994), de cuyas bases de datos originales se surtió nuestro análisis. Constituye una completa y revisada

1. Tal como se indica, el presente trabajo se realiza a partir de un conjunto de datos contenidos en las documentaciones informatizadas del Proyecto *Atlas Climático de la Comunidad Valenciana*. Los autores quieren agradecer tanto a la Conselleria d'Ordenació del Territori de la Generalitat Valenciana, entidad financiadora del proyecto, como al Director del mismo, Dr. Alejandro Pérez Cueva (Dep. Geografía Univ. Valencia), las facilidades otorgadas para acceder a las bases de datos que han permitido realizar el presente trabajo.
actualización con proyección cartográfica, de las variables climáticas que configuran los diferentes tipos de climas de la Comunidad.

Un segundo trabajo de relevancia es el análisis realizado por Martín Vide (1984), quien mediante un cálculo basado en el conocido índice de Gini (véase Materiales y Métodos) estudia la concentración de las precipitaciones diarias en las estaciones de primer orden del litoral mediterráneo desde Cádiz a Girona. El citado autor encuentra una gradación Sur-Norte desde Cádiz, y Norte-Sur, desde Girona, en los valores de concentración de la lluvia, cuyo punto de encuentro, y zona de máxima concentración diaria de la lluvia, se produce en el sur de la provincia de Valencia (figura 1). Para Martín Vide la explicación de esta doble gradación y la localización del punto de cruce de ambas ten-

Fig. 1. Distribución del Índice de Concentración de lluvia en el litoral mediterráneo de la Península Ibérica (MARTÍN VIDE, 1984)

dencias se debe en primer lugar a la progresiva pérdida de influencia atlántica vía Gibraltar (dirección Sur-Norte), controlada finalmente en el espacio por la disposición del relieve, y al incremento del efecto de mediterraneidad (dirección Norte-Sur desde Girona).

Por último, Camarasa (1993) con datos de un SAIH (Sistema Automático de Información Hidrológica) ha estudiado la estructura interna de las tormentas en el sector central-norte de la Comunidad (provincias de Valencia y Castellón). Camarasa encuentra que el diferente reparto espacial de los centros productores de precipitación (Large mesoscale precipitation, Small mesoscale precipitation y células convectivas), y su proyección espacial derivada de los mecanismos atmosféricos generadores (gota fría, vaguadas, etc.), definen dos ambientes contrastados. Por un lado la costa, en la que el carácter de alta
intensidad de las precipitaciones depende fundamentalmente de las células convectivas, pero presenta caudales absolutos escasos; y por otro lado el interior, donde las características de la precipitación son opuestas, y se deben fundamentalmente a centros productores de mayor extensión espacial.

En su análisis cobra especial relevancia el factor topográfico, tanto la altitud, como la orientación de las alineaciones montañosas. En zonas cercanas al mar, Camarasa (1993) contrasta el efecto encauzador del relieve en los denominados valles de fondo de saco, junto al efecto inhibitor de las cotas elevadas sobre la precipitación, mientras en el interior detecta el efecto de la altura sobre el mecanismo de disparo.

Materiales y métodos

El análisis de la concentración de precipitaciones se realiza sobre un total de 100 estaciones pluviométricas a partir de las bases de datos diarias del *Atlas Climático de la Comunitat Valenciana*. En cada estación el total de años registrados al menos es de 30, y siempre comprende el periodo normal 1961-90. Al objeto de homogeneizar los datos del conjunto de estaciones, se ha optado por eliminar los valores de precipitaciones días < 0.5 mm, ya que en algunas estaciones se detectaron dificultades de registro durante la primera década. La distribución espacial de las estaciones (se excluyen las de apoyo de Comunidades limítrofes), se muestra en la figura 2, y en la tabla 1 se ofrece su listado junto a diversos parámetros de localización.

El estudio y análisis de la concentración se realizó siguiendo el método expuesto por Martín Vide (1984) a partir de las distribuciones exponenciales positivas de los porcentajes acumulados de precipitaciones diarias (y), respecto a los correspondientes porcentajes acumulados del número de días de precipitación (x) según ecuación (1):

\[y = A \times e^{bx} \]

y empleando en el ajuste de la función el algoritmo de Mcquard, que minimiza las desviaciones de las sumas de cuadrados (Ott, 1988). Las nuevas distribuciones son en realidad variantes de las curvas de concentración o de Lorenz, y permiten evaluar la irregularidad, o ausencia de equidistribución, de la precipitación diaria. Recientemente un cálculo similar ha sido aplicado con éxito al estudio de los monzones en la India (Ananthakrishnan y Som, 1989).

Sobre una recta de equidistribución, la regularidad perfecta o equidistribución de la precipitación diaria implicaría que las cantidades diarias de lluvia fuesen semejantes. En función de la mayor o menor separación sobre esta recta de los valores observados, la irregularidad de la precipitación diaria será mayor o menor (que es la curva de Lorenz).

El área comprendida entre la recta de equidistribución y los valores observados (S) suministra una medida de la irregularidad. Mayor área refleja mayor irregularidad, y se cuantifica por el índice de Gini según ecuación (2):

\[I = \frac{2S}{10000} \]

Al sustituir los valores observados por los valores del ajuste según (1), e integrar la función entre 0 y 100 según ecuación (3):

\[\left[\frac{A}{b} \times e^{bx} \times \left(x - \frac{1}{b} \right) \right]_{0}^{100} \]

se obtiene el área comprendida entre la curva correspondiente, el eje de abscisas y la ordenada \(x = 100 \). Su valor restado de 5.000 proporciona el área comprendida entre la
<table>
<thead>
<tr>
<th>LOCALIDAD</th>
<th>LAT.</th>
<th>LONG.</th>
<th>I.C.</th>
<th>ALT.</th>
<th>DIST.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACRES, SAN VICENT</td>
<td>38° 47' N</td>
<td>0° 31' W</td>
<td>0.597</td>
<td>722</td>
<td>37.8</td>
</tr>
<tr>
<td>ALACANT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CULTAF JARDÍ</td>
<td>38° 23' N</td>
<td>0° 30' W</td>
<td>0.642</td>
<td>61</td>
<td>0.75</td>
</tr>
<tr>
<td>ALCOI</td>
<td>39° 42' N</td>
<td>0° 28' W</td>
<td>0.767</td>
<td>686</td>
<td>28.5</td>
</tr>
<tr>
<td>ALCOBRA</td>
<td>39° 48' N</td>
<td>0° 42' W</td>
<td>0.566</td>
<td>277</td>
<td>42.6</td>
</tr>
<tr>
<td>ALGEMESÍ</td>
<td>39° 13' N</td>
<td>0° 25' W</td>
<td>0.552</td>
<td>517</td>
<td>15</td>
</tr>
<tr>
<td>ALHUGUIA</td>
<td>39° 45' N</td>
<td>1° 19' W</td>
<td>0.591</td>
<td>1010</td>
<td>89.4</td>
</tr>
<tr>
<td>ALMUDIANA</td>
<td>38° 46' N</td>
<td>0° 23' W</td>
<td>0.582</td>
<td>586</td>
<td>30</td>
</tr>
<tr>
<td>ALTURA</td>
<td>38° 36' N</td>
<td>0° 02' W</td>
<td>0.591</td>
<td>61</td>
<td>0</td>
</tr>
<tr>
<td>CUEVA SANTA</td>
<td>38° 31' N</td>
<td>0° 33' W</td>
<td>0.578</td>
<td>564</td>
<td>30.9</td>
</tr>
<tr>
<td>ALDEA, INSTITUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LABORAL</td>
<td>39° 09' N</td>
<td>0° 26' W</td>
<td>0.685</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>ARCOS</td>
<td>39° 57' N</td>
<td>1° 03' W</td>
<td>0.551</td>
<td>1078</td>
<td>71.6</td>
</tr>
<tr>
<td>ARROYO CEREZO</td>
<td>40° 07' N</td>
<td>1° 25' W</td>
<td>0.544</td>
<td>1344</td>
<td>151.6</td>
</tr>
<tr>
<td>ATENETE</td>
<td>40° 13' N</td>
<td>0° 30' W</td>
<td>0.592</td>
<td>400</td>
<td>29.4</td>
</tr>
<tr>
<td>AVORA, CHI</td>
<td>39° 03' N</td>
<td>1° 03' W</td>
<td>0.553</td>
<td>411</td>
<td>69.6</td>
</tr>
<tr>
<td>AYORA, LA HUNDE</td>
<td>39° 05' N</td>
<td>1° 05' W</td>
<td>0.560</td>
<td>1113</td>
<td>69.6</td>
</tr>
<tr>
<td>BANYERES</td>
<td>38° 43' N</td>
<td>0° 39' W</td>
<td>0.580</td>
<td>816</td>
<td>89</td>
</tr>
<tr>
<td>BENAIXA</td>
<td>38° 42' N</td>
<td>0° 46' W</td>
<td>0.561</td>
<td>472</td>
<td>44.4</td>
</tr>
<tr>
<td>BENOJA, LES</td>
<td>38° 57' N</td>
<td>0° 25' W</td>
<td>0.611</td>
<td>392</td>
<td>27.9</td>
</tr>
<tr>
<td>PLANESAS</td>
<td>39° 51' N</td>
<td>0° 25' W</td>
<td>0.621</td>
<td>472</td>
<td>44.4</td>
</tr>
<tr>
<td>BENAIRAO DE</td>
<td>38° 56' N</td>
<td>0° 12' W</td>
<td>0.637</td>
<td>127</td>
<td>22.3</td>
</tr>
<tr>
<td>VALLENCIGA</td>
<td>39° 03' N</td>
<td>1° 17' W</td>
<td>0.638</td>
<td>55</td>
<td>8.4</td>
</tr>
<tr>
<td>BEIXI</td>
<td>39° 56' N</td>
<td>0° 12' W</td>
<td>0.637</td>
<td>127</td>
<td>22.3</td>
</tr>
<tr>
<td>BIR, CASA FORCEL</td>
<td>38° 38' N</td>
<td>0° 46' W</td>
<td>0.541</td>
<td>754</td>
<td>39.9</td>
</tr>
<tr>
<td>BOCAIRENT</td>
<td>38° 46' N</td>
<td>0° 46' W</td>
<td>0.646</td>
<td>641</td>
<td>41.1</td>
</tr>
<tr>
<td>BOLULLA</td>
<td>38° 41' N</td>
<td>0° 06' W</td>
<td>0.649</td>
<td>234</td>
<td>9.9</td>
</tr>
<tr>
<td>BOCANAS</td>
<td>39° 50' N</td>
<td>0° 08' W</td>
<td>0.612</td>
<td>178</td>
<td>40.2</td>
</tr>
<tr>
<td>CALIC</td>
<td>40° 28' N</td>
<td>0° 37' E</td>
<td>0.596</td>
<td>122</td>
<td>6.9</td>
</tr>
<tr>
<td>CANALS</td>
<td>39° 56' N</td>
<td>0° 33' W</td>
<td>0.610</td>
<td>157</td>
<td>33.6</td>
</tr>
<tr>
<td>CASAS DE</td>
<td>39° 33' N</td>
<td>1° 28' W</td>
<td>0.532</td>
<td>1155</td>
<td>105.3</td>
</tr>
<tr>
<td>CURTOS DE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARENOSE</td>
<td>40° 11' N</td>
<td>0° 32' E</td>
<td>0.556</td>
<td>985</td>
<td>52.2</td>
</tr>
<tr>
<td>EL VILAR, RACONS</td>
<td>38° 51' N</td>
<td>0° 01' E</td>
<td>0.634</td>
<td>21</td>
<td>2.1</td>
</tr>
<tr>
<td>EL VILLAR DEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZORBIDO</td>
<td>39° 44' N</td>
<td>0° 49' W</td>
<td>0.567</td>
<td>518</td>
<td>49.5</td>
</tr>
<tr>
<td>ELX, CHS</td>
<td>38° 16' N</td>
<td>0° 46' W</td>
<td>0.612</td>
<td>86</td>
<td>12.6</td>
</tr>
<tr>
<td>EMB. DE RENAGÓR</td>
<td>39° 44' N</td>
<td>0° 38' W</td>
<td>0.561</td>
<td>461</td>
<td>69.9</td>
</tr>
<tr>
<td>EMB. DE RENARRÉS</td>
<td>39° 49' N</td>
<td>0° 21' W</td>
<td>0.654</td>
<td>387</td>
<td>26.7</td>
</tr>
<tr>
<td>EMB. DE RUDAS</td>
<td>39° 45' N</td>
<td>0° 54' W</td>
<td>0.594</td>
<td>269</td>
<td>54.6</td>
</tr>
<tr>
<td>FARRADIA MARIA</td>
<td>40° 02' N</td>
<td>1° 10' W</td>
<td>0.613</td>
<td>138</td>
<td>34.6</td>
</tr>
<tr>
<td>CRISTINA</td>
<td>40° 02' N</td>
<td>0° 10' W</td>
<td>0.613</td>
<td>138</td>
<td>34.6</td>
</tr>
<tr>
<td>CEBUÉ, CHI</td>
<td>39° 59' N</td>
<td>0° 57' W</td>
<td>0.597</td>
<td>318</td>
<td>42.6</td>
</tr>
<tr>
<td>FONTILLES</td>
<td>38° 47' N</td>
<td>0° 05' W</td>
<td>0.660</td>
<td>437</td>
<td>11.4</td>
</tr>
<tr>
<td>FRESAS</td>
<td>38° 42' N</td>
<td>0° 10' E</td>
<td>0.561</td>
<td>1090</td>
<td>34.2</td>
</tr>
<tr>
<td>GAIBEL</td>
<td>39° 56' N</td>
<td>0° 30' W</td>
<td>0.571</td>
<td>617</td>
<td>33.9</td>
</tr>
<tr>
<td>GILET, SANT ESPERT</td>
<td>39° 40' N</td>
<td>0° 21' W</td>
<td>0.629</td>
<td>180</td>
<td>8.7</td>
</tr>
<tr>
<td>GORGA</td>
<td>38° 43' N</td>
<td>0° 21' W</td>
<td>0.586</td>
<td>545</td>
<td>25.8</td>
</tr>
<tr>
<td>GRANJA CAMPILLO</td>
<td>39° 54' N</td>
<td>1° 19' W</td>
<td>0.599</td>
<td>1099</td>
<td>96.3</td>
</tr>
<tr>
<td>GUADASSUAR</td>
<td>38° 11' N</td>
<td>0° 28' W</td>
<td>0.598</td>
<td>22</td>
<td>18.6</td>
</tr>
<tr>
<td>GUARDAMAR DEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SECURÉ</td>
<td>38° 06' N</td>
<td>0° 48' W</td>
<td>0.590</td>
<td>5</td>
<td>0.9</td>
</tr>
<tr>
<td>JARAFU</td>
<td>38° 36' N</td>
<td>0° 01' E</td>
<td>0.554</td>
<td>586</td>
<td>69.6</td>
</tr>
</tbody>
</table>

Tabla 1. Estaciones de trabajo del territorio de la Comunidad Valenciana y valores del Índice de Concentración diaria de las precipitaciones. lat: latitud; long: longitud; I.C. Índice de concentración de las precipitaciones; alt: altitud (m); dist: distancia al mar (km).
Fig. 2. Localización de las estaciones de trabajo pertenecientes al territorio de la Comunidad Valenciana
se obtiene el área comprendida entre la curva correspondiente, el eje de abscisas y la ordenada \(x = 100 \). Su valor restado de 5.000 proporciona el área comprendida entre la curva de equidistribución y la ordenada \(x = 100 \), es decir \(S^* \). El cociente, ecuación (4):

\[
I^* = \frac{2S^*}{10000}
\]

cuantifica la separación del estado de equidistribución, es decir la mayor o menor irregularidad. El índice \(I^* \) varía entre 0 (regularidad perfecta) y 1 (Martín Vide, 1984).

Los índices resultantes fueron sometidos a un análisis de tendencias espaciales por el método Kriging al objeto de realizar una cartografía de isolíneas de concentración y poder estudiar la distribución espacial de la misma. Finalmente, se analizó, mediante las técnicas de Análisis de Componentes Principales y análisis de varianza, la incidencia de los factores altitud, latitud y distancia a la costa en el índice de concentración. Las pruebas a posteriori se realizaron según el método Newman-Keulse.

Resultados

Los valores del índice de concentración de las estaciones estudiadas se muestran en la tabla 1. El máximo se localiza en Alzira (0.685), al sur de la ciudad de Valencia (0.664), y el mínimo corresponde a Sinarcas (0.536) en zona interior. La cartografía de isocentroesporación de la precipitación se muestra en la figura 3, en la que se observa una disposición general en bandas costa-interior, así como la doble gradación Norte-Sur y Sur-Norte con una zona de convergencia en el Cap de Sant Antoni. Asimismo se observan dos anormalías en el conjunto general; la primera es positiva sobre su entorno (Vall d’Albaida, estaciones de Ontinyent y Bocairent), mientras la segunda (estaciones de Relleu y Sella), tiene valores inferiores respecto a las estaciones vecinas.

<table>
<thead>
<tr>
<th>Componentes Principales</th>
<th>Varianza</th>
<th>Altitud</th>
<th>Latitud (*)</th>
<th>Distancia al mar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Componente 1</td>
<td>61,7</td>
<td>0,704</td>
<td>0,221</td>
<td>0,675</td>
</tr>
<tr>
<td>Componente 2</td>
<td>32,8</td>
<td>-0,026</td>
<td>0,958</td>
<td>-0,286</td>
</tr>
<tr>
<td>Componente 3</td>
<td>5,4</td>
<td>0,710</td>
<td>-0,184</td>
<td>-0,680</td>
</tr>
</tbody>
</table>

Tabla 2. Análisis de Componentes Principales. Porcentaje de varianza explicada por cada Componente y peso de cada factor en cada componente de las variables altitud, latitud y distancia al mar. (*) Se insiste en que, para evitar la anulación de los efectos de la variable latitud debido a la doble tendencia Norte-Sur y Sur-Norte, los valores de latitud se toman como distancias al paralelo de Alzira que es el punto de máxima concentración.

En la tabla 2 se muestran los resultados del Análisis de Componentes Principales a partir de las variables altitud, latitud y distancia al mar en línea recta. Dado el doble efecto de la latitud, ésta se ha tomado como distancia latitudinal al paralelo de Alzira, al objeto de evitar la anulación de sus efectos. Los tres factores explican el 60.6 % de varianza total del índice \(p < 0.05 \).

El Componente 1 queda configurado por los factores altitud y distancia al mar (es decir: efecto costa interior), y representa el más alto porcentaje de varianza explicada (61.7 %). Junto con el componente 2, identificado casi en exclusiva con el efecto de la latitud, explican el 95 % del total de varianza. Debido a que las variables distancia al mar y altitud están fuertemente
Fig. 3. Índice de Concentración diaria de las precipitaciones en la Comunidad Valenciana.
correlacionadas, los posteriores análisis han considerado solamente la distancia al mar como fuente de variación del índice, y la altitud ha sido empleada para matizar algunos resultados.

Las variaciones costa-interior

La distribución del índice de precipitaciones en relación a la distancia al mar se observa en la figura 4, en la que se aprecian tres franjas. La primera, hasta una línea interior a unos 15 km de la costa, presenta los valores promedio del índice más elevado (0.626). Un segundo grupo de estaciones, localizadas en una orla entre 15 y 55 km de la costa, cuya media de índice es de 0.596; finalmente, el sector interior, a distancias superiores a 55 km, presenta los valores más bajos del índice (0.554). El análisis de varianza de las tres franjas costa-interior indica la existencia de diferencias significativas (p < 0.001), y las pruebas *a posteriori* confirman que la gradación espacial del índice, costa > franja intermedia > interior, es significativa (p < 0.001).

Variaciones latitudinales

Las variaciones latitudinales fueron exploradas tras considerar la disposición general del relieve y su orientación en el conjunto de la Comunidad. En primer lugar se estableció la divisoria de aguas a partir de la línea de máxima cota entre la provincia de Valencia y Alicante (sierra de Bèrnia, Aixortà, Serrella, Aitana, Carrasqueta, Menejador,

![Diagram](image)

Fig. 4. Relaciones entre el Índice de Concentración y distancia al mar (km).

Posteriormente se delimitó un segundo sector limitado por el sur por la divisoria general citada y por el norte por la Serra Grossa y la Serra de la Creu. Este sector central, auténtica área de transición, engloba la Vall d’Albaida, cuenca del Serpis y el Cap de la Nau (figura 5).

Como resultado final, quedaron definidos tres conjuntos espaciales. El primero, incluye la provincia de Castellón y la mayor parte de la de Valencia y presenta una disposición topográfica suavemente escalonada hacia el interior. El segundo sector, localizado entre la Serra Grossa y la Serra de la Creu y la divisoria de aguas de las provincias de Valencia y Alicante, presenta una disposición general del relieve oeste-este. Finalmente el sector sur, incluye tres cuartas partes de la provincia de Alicante y presenta una estructura topográfica en bandas paralelas al mar que se incurvan hacia el este en su contacto con la zona anterior.

El análisis de varianza del índice de concentración en los tres sectores señala la existencia de diferencias latitudinales significativas (p = 0.002), con unos valores promedio para el norte de 0.588, el sur 0.587 y el sector central de 0.624. Las diferencias entre sectores norte y sur con la transición son significativas (p < 0.05), pero el norte y sur no difieren entre sí (p > 0.05, figura 6).

Variaciones costa-interior y latitud

El cruce de variables distancia al mar y latitud permite analizar la transición costa-interior en el gradiente latitudinal y detectar las posibles variaciones internas de cada sector.

El efecto de distancia a la costa sobre la concentración de las precipitaciones varía con la latitud (tabla 3). En la banda cercana a la costa (< 15 km) el sector norte y la transición presentan valores significativamente superiores (p < 0.05) al sector sur. Lo mismo ocurre en la banda comprendida entre 15 y 55 km. No se han observado diferencias a distancias superiores a 55 km de la costa entre el sector norte y sur.

Dentro de cada sector las variaciones costa interior son significativas (p < 0.05) en el norte (Tabla 4), pero no lo son en el sector central (p = 0.07) y en el sector sur (p = 0.06). Dicho sector, no obstante, presenta una elevada variabilidad interna y en la franja > 55 km de la costa solamente tiene una estación dentro de la Comunidad. Los valores promedio con sus intervalos de confianza (p = 0.05) de cada sector se muestran en la figura 6.

En la figura 7 se representan el valor promedio y sus intervalos de confianza (p = 0.05) de los tres sectores latitudinales para cada grupo de distancias a la costa. Frente a la clara gradación que se observa en el sector norte, el valor de índice en el sector de transición y el sector sur de la Comunidad no difieren significativamente.

<table>
<thead>
<tr>
<th></th>
<th>Norte</th>
<th>Transición</th>
<th>Sur</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Km</td>
<td>0,632</td>
<td>0,640</td>
<td>0,605</td>
</tr>
<tr>
<td>15 - 55 Km</td>
<td>0,597</td>
<td>0,614</td>
<td>0,568</td>
</tr>
<tr>
<td>>15 Km</td>
<td>0,553</td>
<td>-</td>
<td>0,569</td>
</tr>
</tbody>
</table>

Fig. 5. Zonación del Índice de Concentración diaria de precipitaciones en la Comunidad Valenciana.
Fig. 6. Índice de Concentración. Valores promedio por sectores e intervalos de confianza (0.05). Norte (N), Transición (T), Sur (S), su localización se muestra en la figura 5.

Fig. 7. Gradación costa interior del Índice de Concentración diaria de precipitaciones. Valores promedio por bandas latitudinales. 0: distancia 0-15 km; 1: distancia 15-55 km; 2: distancia > 55 km.
<table>
<thead>
<tr>
<th></th>
<th>Norte</th>
<th>Transición</th>
<th>Sur</th>
</tr>
</thead>
</table>
| 15 Km | 0,632
| 15-55 Km | 0,597 | 0,614 | 0,568 |
| >15 Km | 0,553 | | 0,569 |

DISCUSIÓN

El estudio de la concentración diaria de las precipitaciones en la Comunidad Valenciana refleja unas pautas espaciales en las que se reconocen ambientes netamente diferenciados en función de variables de localización. Las variaciones costa-interior y la gradación latitudinal, sugieren la posibilidad de realizar una clasificación del territorio en función de riesgos de inundación, agresividad pluvial o riesgos de erosión. En general, esta clasificación separa dos territorios: la franja litoral, en la que las precipitaciones tienen las mayores concentraciones diarias, y el dominio interior, donde la concentración diaria de las precipitaciones es menor. Los resultados concuerdan en términos generales con los obtenidos en los estudios de los mecanismos de producción de lluvia, (Camarasa, 1993), en los que se ha sugerido que los núcleos pequeños (células convectivas) son los causantes de la torrencialidad de las lluvias en las cercanías de la costa, aspecto que queda contrastado con los resultados presentes en el conjunto del territorio.

En segundo lugar, los resultados corroboran la doble articulación sur-norte y norte-sur señalada por Martín Vide (1984) en el conjunto del litoral mediterráneo español, permiten precisar que la gradación afecta a una franja costera en torno a 55 km de profundidad y, finalmente, permiten delimitar el área de transición entre ambas tendencias y sus características. No obstante, la comparación directa con los valores del índice de concentración señalados por Martín Vide (1984) no se puede realizar, bien por la depuración a que hemos sometido los datos originales (eliminación de las cantidades diarias < 0,5 mm), bien por el algoritmo empleado, o bien por los diferentes períodos analizados en ambos trabajos (véase Materiales y Métodos). Así, Alicante, Valencia, y Castellón (Vila Real) presentan variaciones de 0,64 / 0,67, 0,66 / 0,69, y 0,61 / 0,68 respectivamente.

El relieve y los diferentes tipos de mecanismos productores de la precipitación, junto al efecto de la mayor o menor influencia mediterránea (norte) o atlántica (sur) son factores que explican la distribución del Índice de Concentración.

La transición costa-interior difiere en el espacio. Al norte del Cap de la Nau (tabla 4 y figura 6), en el denominado sector norte, la gradación del Índice de Concentración es muy clara y es pareja a la estructura topográfica. De manera general, las variaciones del índice quedan encuadradas en los umbrales 0-200, 200-700 y > 700 m sobre el nivel del mar, intervalos semejantes a los descritos por Camarasa (1993).

Hacia el sur, la zona de transición (entorno del Cap de Sant Antoni y comarca de la Vall d’Albaida, véase figura 5) tiene la peculiaridad de que el índice de concentración se mantiene muy elevado hacia el interior. El análisis topográfico podría permitir reconocer
un efecto del relieve sobre los mecanismos de disparo, al configurarse la topografía en un valle en forma de fondo de saco orientado hacia el este.

La elevada variabilidad que se observa en el índice de la zona más meridional es la primera explicación de la ausencia de diferencias significativas costa-interior en este sector, una de cuyas causas puede ser la cercanía de las alineaciones montañosas a la costa. En segundo lugar, la disposición topográfica, incurvada desde una dirección SW-NE hacia una orientación W-E, e incluso N-S, produce un aislamiento respecto a los mecanismos productores de precipitación dominantes al norte del Cap de la Nau (influencia mediterránea, MARTÍN VIDE, 1984), por lo que este espacio se comporta de manera distinta del resto de la Comunidad. Los menores volúmenes de precipitación registrados en la zona son una comprobación del hecho, a la vez que confirman la hipótesis general de Martín Víde (1984) en el conjunto del litoral.

La peculiaridad más notable que se ha observado en este sector es la constituye el área localizada en el entorno de las estaciones de Relleu-Sella, ajena al gradiente general costero. En efecto, la protección que brinda la disposición del relieve respecto a masas de aire provenientes del norte, unido a la apertura del arco montañoso hacia el SE y su moderada elevación, parecen sugerir que la actuación generalizada de las células convectivas, tan eficaces al norte de la divisoria, es obstaculizada aquí. Sin embargo, por su posición elevada y cercanía al mar, la altitud es capaz de acentuar el efecto de disparo ante cualquier mecanismo de precipitación. Esta es quizás la razón del lige-ro aumento de las precipitaciones en su entorno, parejo a unos índices de concentración bastante moderados. No obstante, el efecto es limitado, pues en la costa las áreas en el entorno de la Vila Joiosa, Benidorm y Altea, son extremadamente escasas en precipitaciones (PÉREZ CUEVA, 1994).

Las consecuencias que se pueden alumbrar del análisis de la concentración diaria de las precipitaciones son varias, y enlazan con sus efectos sobre los procesos de degradación-desertificación del suelo, el balance de agua, riesgos de avenidas, etc.

El reparto espacial del índice define áreas diferenciadas ante los riesgos erosivos y riesgos de avenidas, en los que debe ser estudiada la dicotomía Magnitud-Frecuencia (ROMERO et al., 1988; DE PLOEY, KIRBY, AHNERT, 1991) a la luz de los retornos de diferentes valores de precipitación. En este sentido, el índice diario analizado podría ser una estimación más fiable de la agresividad de la lluvia que los índices calculados sobre datos mensuales (Fournier).

En relación al balance de agua, nuestro estudio muestra la extrema dependencia generalizada del volumen de precipitación anual respecto a un escaso número de días de precipitación, por lo que magnitudes como el promedio de lluvia anual o mensual, son poco representativos de las condiciones reales, especialmente en la franja costera tal como se ha señalado frecuentemente (QUEREDA, 1974 y 1989).

CONCLUSIONES

El estudio de la concentración diaria de las precipitaciones en la Comunidad Valenciana señala la existencia de una gradación (de mayor a menor) entre la costa y el interior, que se superpone a las variaciones latitudinales sur-norte y norte sur.

La topografía se manifiesta como una variable que puede ser determinante en el reparto espacial del índice de concentración por sus efectos sobre las masas de aire provenientes del norte (influencia mediterránea) o sur (influencia atlántica).
AGRADECIMIENTOS

Los autores agradecen las sugerencias aportadas al manuscrito original por los Profesores Rosselló y Pérez Cueva (Dep. Geografía, Universidad de Valencia) y Martín Vide (Dep. Geografía, Universidad de Barcelona). El presente trabajo forma parte del Proyecto CICYT CL95-1947-C03-03.

BIBLIOGRAFÍA

