Jordan gradings on exceptional simple Lie algebras

Alberto Elduque

Universidad de Zaragoza

July 2009
1. Jordan subgroups

2. Composition algebras

3. Freudenthal Magic Square

4. Exceptional Jordan gradings
1. Jordan subgroups

2. Composition algebras

3. Freudenthal Magic Square

4. Exceptional Jordan gradings
Definition (Alekseevski˘ı 1974)

Given a simple Lie algebra g and a complex Lie group G with $\text{Int}(g) \leq G \leq \text{Aut}(g)$, an abelian subgroup A of G is a Jordan subgroup if:

(i) its normalizer $N_G(A)$ is finite,
(ii) A is a minimal normal subgroup of its normalizer, and
(iii) its normalizer is maximal among the normalizers of those abelian subgroups satisfying (i) and (ii).
Jordan subgroups

Definition (Alekseevskii 1974)
Given a simple Lie algebra \mathfrak{g} and a complex Lie group G with $\text{Int}(\mathfrak{g}) \leq G \leq \text{Aut}(\mathfrak{g})$, an abelian subgroup A of G is a **Jordan subgroup** if:

(i) its normalizer $N_G(A)$ is finite,
(ii) A is a minimal normal subgroup of its normalizer, and
(iii) its normalizer is maximal among the normalizers of those abelian subgroups satisfying (i) and (ii).
The Jordan subgroups are elementary ($\mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$ for some prime number p), and they induce gradings, called Jordan gradings, in the Lie algebra g.

The classification of Jordan subgroups by Alekseevski splits in two types: classical and exceptional.
The Jordan subgroups are elementary ($\mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$ for some prime number p), and they induce gradings, called *Jordan gradings*, in the Lie algebra \mathfrak{g}.
The Jordan subgroups are elementary \((\mathbb{Z}_p \times \cdots \times \mathbb{Z}_p) \) for some prime number \(p \), and they induce gradings, called *Jordan gradings*, in the Lie algebra \(\mathfrak{g} \).

The classification of Jordan subgroups by Alekseevskiǐ splits in two types: classical and exceptional.
Jordan subgroups: classical cases

The dimension of all nonzero homogeneous spaces is always 1 in these classical cases, which are well-known.
Jordan subgroups: classical cases

<table>
<thead>
<tr>
<th>g</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{p^n-1}</td>
<td>\mathbb{Z}_p^{2n}</td>
</tr>
<tr>
<td>$B_n \ (n \geq 3)$</td>
<td>\mathbb{Z}_2^{2n}</td>
</tr>
<tr>
<td>$C_{2^{n-1}} \ (n \geq 2)$</td>
<td>\mathbb{Z}_2^{2n}</td>
</tr>
<tr>
<td>$D_{n+1} \ (n \geq 3)$</td>
<td>\mathbb{Z}_2^{2n}</td>
</tr>
<tr>
<td>$D_{2^{n-1}} \ (n \geq 3)$</td>
<td>\mathbb{Z}_2^{2n}</td>
</tr>
</tbody>
</table>

The dimension of all nonzero homogeneous spaces is always 1 in these classical cases, which are well-known.
The dimension of all nonzero homogeneous spaces is always 1 in these classical cases, which are well-known.
Jordan subgroups: exceptional cases

<table>
<thead>
<tr>
<th>\mathfrak{g}</th>
<th>A</th>
<th>$\dim \mathfrak{g}_\alpha \ (\alpha \neq 0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_2</td>
<td>\mathbb{Z}_2^3</td>
<td>2</td>
</tr>
<tr>
<td>F_4</td>
<td>\mathbb{Z}_3^3</td>
<td>2</td>
</tr>
<tr>
<td>E_8</td>
<td>\mathbb{Z}_5^3</td>
<td>2</td>
</tr>
<tr>
<td>D_4</td>
<td>\mathbb{Z}_2^3</td>
<td>4</td>
</tr>
<tr>
<td>E_8</td>
<td>\mathbb{Z}_2^5</td>
<td>8</td>
</tr>
<tr>
<td>E_6</td>
<td>\mathbb{Z}_3^3</td>
<td>3</td>
</tr>
</tbody>
</table>
Jordan subgroups: exceptional cases

<table>
<thead>
<tr>
<th>\mathfrak{g}</th>
<th>A</th>
<th>$\dim \mathfrak{g}_\alpha$ ($\alpha \neq 0$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_2</td>
<td>\mathbb{Z}_2^3</td>
<td>2</td>
</tr>
<tr>
<td>F_4</td>
<td>\mathbb{Z}_3^3</td>
<td>2</td>
</tr>
<tr>
<td>E_8</td>
<td>\mathbb{Z}_5^3</td>
<td>2</td>
</tr>
<tr>
<td>D_4</td>
<td>\mathbb{Z}_2^3</td>
<td>4</td>
</tr>
<tr>
<td>E_8</td>
<td>\mathbb{Z}_2^5</td>
<td>8</td>
</tr>
<tr>
<td>E_6</td>
<td>\mathbb{Z}_3^3</td>
<td>3</td>
</tr>
</tbody>
</table>

Models of these gradings?
1. Jordan subgroups

2. Composition algebras

3. Freudenthal Magic Square

4. Exceptional Jordan gradings
Composition algebras

Definition

A composition algebra over a field F is a triple (C, \cdot, n) where C is a vector space over F, $\cdot : C \times C \to C$ is a bilinear multiplication, and $n : C \to F$ is a multiplicative nondegenerate quadratic form: its polar $n(x, y) = n(x + y) - n(x) - n(y)$ is nondegenerate, $n(x \cdot y) = n(x)n(y)$ for all $x, y \in C$.

The unital composition algebras will be called Hurwitz algebras.

Alberto Elduque (Universidad de Zaragoza)
A *composition algebra* over a field \mathbb{F} is a triple (C, \cdot, n) where

- C is a vector space over \mathbb{F},
- $x \cdot y$ is a bilinear multiplication $C \times C \rightarrow C$,
- $n : C \rightarrow \mathbb{F}$ is a multiplicative nondegenerate quadratic form:
 - its polar $n(x, y) = n(x + y) - n(x) - n(y)$ is nondegenerate,
 - $n(x \cdot y) = n(x)n(y) \forall x, y \in C$.

The unital composition algebras will be called *Hurwitz algebras*.

Alberto Elduque (Universidad de Zaragoza)
A composition algebra over a field \mathbb{F} is a triple (C, \cdot, n) where

- C is a vector space over \mathbb{F},
- $x \cdot y$ is a bilinear multiplication $C \times C \rightarrow C$,
- $n : C \rightarrow \mathbb{F}$ is a multiplicative nondegenerate quadratic form:
 - its polar $n(x, y) = n(x + y) - n(x) - n(y)$ is nondegenerate,
 - $n(x \cdot y) = n(x)n(y)$ $\forall x, y \in C$.

The unital composition algebras will be called Hurwitz algebras.
Hurwitz algebras

form a class of degree two algebras:

\[x \cdot 2 - n(x,1)x + n(x)1 = 0 \]

for any \(x \).

They are endowed with an antiautomorphism, the standard conjugation:

\[\bar{x} = n(x,1)1 - x, \]

satisfying

\[\bar{\bar{x}} = x, \quad x + \bar{x} = n(x,1)1, \quad x \cdot \bar{x} = \bar{x} \cdot x = n(x)1. \]
Hurwitz algebras form a class of degree two algebras:

\[x^2 - n(x, 1)x + n(x)1 = 0 \]

for any \(x \).

They are endowed with an antiautomorphism, the standard conjugation:

\[\bar{x} = n(x, 1)1 - x, \]

satisfying

\[\bar{x} = x, \quad x + \bar{x} = n(x, 1)1, \quad x \cdot \bar{x} = \bar{x} \cdot x = n(x)1. \]
Let (B, \cdot, n) be an associative Hurwitz algebra, and let λ be a nonzero scalar in the ground field F. Consider the direct sum of two copies of B:

$C = B \oplus Bu,$

with the following multiplication and nondegenerate quadratic form that extend those on B:

$\left(a + bu \right) \cdot \left(c + du \right) = \left(a \cdot c + \lambda \overline{d} \cdot b \right) + \left(d \cdot a + b \cdot \overline{c} \right)u,$

$n \left(a + bu \right) = n \left(a \right) - \lambda n \left(b \right).$

Then (C, \cdot, n) is again a Hurwitz algebra, which is denoted by $CD(B, \lambda)$.

Notation: $CD(A, \mu, \lambda) := CD(CD(A, \mu), \lambda)$.
Cayley-Dickson doubling process

Let \((B, \cdot, n)\) be an associative Hurwitz algebra, and let \(\lambda\) be a nonzero scalar in the ground field \(\mathbb{F}\). Consider the direct sum of two copies of \(B\):

\[C = B \oplus Bu, \]

with the following multiplication and nondegenerate quadratic form that extend those on \(B\):

\[
(a + bu) \cdot (c + du) = (a \cdot c + \lambda \bar{d} \cdot b) + (d \cdot a + b \cdot \bar{c})u,
\]

\[
n(a + bu) = n(a) - \lambda n(b).
\]

Then \((C, \cdot, n)\) is again a Hurwitz algebra, which is denoted by \(CD(B, \lambda)\).
Let \((B, \cdot, n)\) be an associative Hurwitz algebra, and let \(\lambda\) be a nonzero scalar in the ground field \(\mathbb{F}\). Consider the direct sum of two copies of \(B\):

\[
C = B \oplus Bu,
\]

with the following multiplication and nondegenerate quadratic form that extend those on \(B\):

\[
(a + bu) \cdot (c + du) = (a \cdot c + \lambda \bar{d} \cdot b) + (d \cdot a + b \cdot \bar{c})u,
\]

\[
n(a + bu) = n(a) - \lambda n(b).
\]

Then \((C, \cdot, n)\) is again a Hurwitz algebra, which is denoted by \(CD(B, \lambda)\).

Notation: \(CD(A, \mu, \lambda) := CD(CD(A, \mu), \lambda)\).
Generalized Hurwitz Theorem

Theorem

Every Hurwitz algebra over a field F is isomorphic to one of the following:

(i) The ground field F if its characteristic is $\neq 2$.

(ii) A quadratic commutative and associative separable algebra $K(\mu) = F_1 + Fv$, with $v^2 = v + \mu$ and $4\mu + 1 \neq 0$. The norm is given by its generic norm.

(iii) A quaternion algebra $Q(\mu, \beta) = CD(K(\mu), \beta)$. (These four-dimensional algebras are associative but not commutative.)

(iv) A Cayley algebra $C(\mu, \beta, \gamma) = CD(K(\mu), \beta, \gamma)$. (These eight-dimensional algebras are alternative, but not associative.)
Theorem

Every Hurwitz algebra over a field \mathbb{F} is isomorphic to one of the following:

(i) The ground field \mathbb{F} if its characteristic is $\neq 2$.

(ii) A quadratic commutative and associative separable algebra $K(\mu) = \mathbb{F}1 + \mathbb{F}v$, with $v^2 = v + \mu$ and $4\mu + 1 \neq 0$. The norm is given by its generic norm.

(iii) A quaternion algebra $Q(\mu, \beta) = CD(K(\mu), \beta)$. (These four dimensional algebras are associative but not commutative.)

(iv) A Cayley algebra $C(\mu, \beta, \gamma) = CD(K(\mu), \beta, \gamma)$. (These eight dimensional algebras are alternative, but not associative.)
The Cayley-Dickson doubling process induces a \(\mathbb{Z}_2 \)-grading on the resulting algebra. Hence if the characteristic of the ground field \(F \) is \(\neq 2 \), any Cayley algebra appears as

\[
\mathbb{C} = \mathbb{C}D(F, \alpha, \beta, \gamma) = \mathbb{Q} \oplus \mathbb{Q}z = (K \oplus K_y) \oplus (K \oplus K_y)z = (F \oplus F_x) \oplus (F \oplus F_x)y \oplus ((F \oplus F_x)y \oplus (F \oplus F_x)y)z,
\]

and it is naturally graded over \(\mathbb{Z}_3^2 \), with

- \(\mathbb{C}(\bar{1}, \bar{0}, \bar{0}) = F_x \)
- \(\mathbb{C}(\bar{0}, \bar{1}, \bar{0}) = F_y \)
- \(\mathbb{C}(\bar{0}, \bar{0}, \bar{1}) = F_z \)
The Cayley-Dickson doubling process induces a \mathbb{Z}_2-grading on the resulting algebra.
The Cayley-Dickson doubling process induces a \mathbb{Z}_2-grading on the resulting algebra.

Hence if the characteristic of the ground field \mathbb{F} is $\neq 2$, any Cayley algebra appears as

$$C = CD(\mathbb{F}, \alpha, \beta, \gamma) = \mathbb{Q} \oplus \mathbb{Q}z$$
$$= (\mathbb{K} \oplus \mathbb{K}y) \oplus (\mathbb{K} \oplus \mathbb{K}y)z$$
$$= (\mathbb{F} \oplus \mathbb{F}x) \oplus (\mathbb{F} \oplus \mathbb{F}x)y$$
$$\oplus \left((\mathbb{F} \oplus \mathbb{F}x) \oplus (\mathbb{F} \oplus \mathbb{F}x)y \right)z,$$
The Cayley-Dickson doubling process induces a \mathbb{Z}_2-grading on the resulting algebra.

Hence if the characteristic of the ground field \mathbb{F} is $\neq 2$, any Cayley algebra appears as

$$C = CD(\mathbb{F}, \alpha, \beta, \gamma) = Q \oplus Qz$$
$$= (K \oplus Ky) \oplus (K \oplus Ky)z$$
$$= (F \oplus Fx) \oplus (F \oplus Fx)y$$
$$\oplus \left((F \oplus Fx) \oplus (F \oplus Fx)y\right)z,$$

and it is naturally graded over \mathbb{Z}_2^3, with

$$C_{(\bar{1}, \bar{0}, \bar{0})} = Fx, \quad C_{(\bar{0}, \bar{1}, \bar{0})} = Fy, \quad C_{(\bar{0}, \bar{0}, \bar{1})} = Fz.$$
Symmetric composition algebras

Definition

A composition algebra \((S, \ast, n)\) is said to be symmetric if the polar form of its norm is associative:

\[n((x \ast y), z) = n(x, y \ast z), \]

for any \(x, y, z \in S\).

This is equivalent to the condition:

\[(x \ast y) \ast x = n(x) y = x \ast (y \ast x), \]

for any \(x, y \in S\).

Alberto Elduque (Universidad de Zaragoza)
A composition algebra \((S, \ast, n)\) is said to be symmetric if the polar form of its norm is associative:

\[
n(x \ast y, z) = n(x, y \ast z),
\]

for any \(x, y, z \in S\).

This is equivalent to the condition:

\[
(x \ast y) \ast x = n(x)y = x \ast (y \ast x),
\]

for any \(x, y \in S\).
Examples

Para-Hurwitz algebras

Given a Hurwitz algebra \((\mathbb{C}, \cdot, n)\), its para-Hurwitz counterpart is the composition algebra \((\overline{\mathbb{C}}, \cdot, n)\), where \(x \cdot y = \overline{x} \cdot \overline{y}\).

This algebra will be denoted by \(\overline{\mathbb{C}}\) for short.

Okubo algebras

Assume \(\text{char } F \neq 3\) and \(\exists \omega \neq 1, -1, \omega^3 \in F\).

Consider the algebra \(A_0\) of zero trace elements in a central simple degree 3 associative algebra with multiplication \(x^*y = \omega xy - \omega^2 yx - \omega^2 3 \text{tr}(xy)^{1/3}\), and norm \(n(x) = -\frac{1}{2} \text{tr}(x^2)\).

(There is a more general definition valid over arbitrary fields.)
Examples

- **Para-Hurwitz algebras:** Given a Hurwitz algebra \((\mathbb{C}, \cdot, n)\), its para-Hurwitz counterpart is the composition algebra \((\mathbb{C}, \bullet, n)\), where \(x \bullet y = \bar{x} \cdot \bar{y}\).

This algebra will be denoted by \(\bar{\mathbb{C}}\) for short.
Examples

- **Para-Hurwitz algebras:** Given a Hurwitz algebra \((\mathbb{C}, \cdot, n)\), its para-Hurwitz counterpart is the composition algebra \((\mathbb{C}, \bullet, n)\), where

 \[x \bullet y = \bar{x} \cdot \bar{y}. \]

 This algebra will be denoted by \(\bar{\mathbb{C}}\) for short.

- **Okubo algebras:** Assume \(\text{char } \mathbb{F} \neq 3\) and \(\exists \omega \neq 1 = \omega^3\) in \(\mathbb{F}\). Consider the algebra \(A_0\) of zero trace elements in a central simple degree 3 associative algebra with multiplication

 \[x \ast y = \omega xy - \omega^2 yx - \frac{\omega - \omega^2}{3} \text{tr}(xy)1, \]

 and norm \(n(x) = -\frac{1}{2} \text{tr}(x^2)\).

 (There is a more general definition valid over arbitrary fields.)
Classification

Theorem (E.-Myung 93, E. 97)

Any symmetric composition algebra is either:

- a para-Hurwitz algebra,
- a form of a two-dimensional para-Hurwitz algebra without idempotent elements (with a precise description),
- an Okubo algebra.
Classification

Theorem (E.-Myung 93, E. 97)

Any symmetric composition algebra is either:

- a para-Hurwitz algebra,
- a form of a two-dimensional para-Hurwitz algebra without idempotent elements (with a precise description),
- an Okubo algebra.
Gradings on para-Hurwitz algebras

Therefore, any para-Cayley algebra over a field of characteristic $\neq 2$ is endowed with a \mathbb{Z}_3-grading.
Gradings on para-Hurwitz algebras

Theorem

Gradings on para-Hurwitz algebras of dimension 4 or 8

\[\uparrow \]

Gradings on their Hurwitz counterparts.
Gradings on para-Hurwitz algebras

Theorem

Gradings on para-Hurwitz algebras of dimension 4 or 8

\[\downarrow \]

Gradings on their Hurwitz counterparts.

Therefore, any para-Cayley algebra over a field of characteristic $\neq 2$ is endowed with a \mathbb{Z}_2^3-grading.
Gradings on Okubo algebras

Assuming F is a field of characteristic $\neq 3$ containing a primitive third root ω of 1, then the matrix algebra $\text{Mat}_3(F)$ is generated by the order 3 matrices:

$$x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{bmatrix},$$
$$y = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix},$$

and the assignment $\deg(x) = (\bar{1}, \bar{0})$, $\deg(y) = (\bar{0}, \bar{1})$, gives a \mathbb{Z}_2^3-grading of $\text{Mat}_3(F)$, which is inherited by the Okubo algebra $(\text{sl}_3(F), \ast, n)$.

Over algebraically closed fields, any grading on an Okubo algebra is a coarsening of either the natural \mathbb{Z}_2-grading (Cartan grading) or this \mathbb{Z}_2^3-grading.
Gradings on Okubo algebras

Assuming \mathbb{F} is a field of characteristic $\neq 3$ containing a primitive third root ω of 1, then the matrix algebra $\text{Mat}_3(\mathbb{F})$ is generated by the order 3 matrices:

\[
\begin{align*}
x &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \\
y &= \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix},
\end{align*}
\]

and the assignment

\[
\text{deg}(x) = (\bar{1}, \bar{0}), \quad \text{deg}(y) = (\bar{0}, \bar{1}),
\]

gives a \mathbb{Z}_2^3-grading of $\text{Mat}_3(\mathbb{F})$, which is inherited by the Okubo algebra $(\mathfrak{sl}_3(\mathbb{F}), \ast, n)$.

Assuming F is a field of characteristic $\neq 3$ containing a primitive third root ω of 1, then the matrix algebra $\text{Mat}_3(F)$ is generated by the order 3 matrices:

$$x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \quad y = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix},$$

and the assignment

$$\deg(x) = (\bar{1}, \bar{0}), \quad \deg(y) = (\bar{0}, \bar{1}),$$

gives a \mathbb{Z}_3^2-grading of $\text{Mat}_3(F)$, which is inherited by the Okubo algebra $(\mathfrak{sl}_3(F), *, n)$.

Over algebraically closed fields, any grading on an Okubo algebra is a coarsening of either the natural \mathbb{Z}^2-grading (Cartan grading) or this \mathbb{Z}_3^2-grading.
1. Jordan subgroups

2. Composition algebras

3. Freudenthal Magic Square

4. Exceptional Jordan gradings
Assume from now on that $\text{char } F \neq 2, 3$ and $\omega \in F$.

Let (S, \ast, n) be any symmetric composition algebra and consider the corresponding orthogonal Lie algebra:

$$o(S, n) = \{ d \in \text{End}_F(S) : n(d(x), y) + n(x, d(y)) = 0 \forall x, y \in S \},$$

and the subalgebra of $o(S, n)$ (with componentwise multiplication):

$$\text{tri}(S, \ast, n) = \{ (d_0, d_1, d_2) \in o(S, n)^3 : d_0(x \ast y) = d_1(x) \ast y + x \ast d_2(y) \forall x, y \in S \}.$$

This is the triality Lie algebra.

The map:

$$\theta : \text{tri}(S, \ast, n) \to \text{tri}(S, \ast, n), \quad (d_0, d_1, d_2) \mapsto (d_2, d_0, d_1)$$

is an automorphism of order 3.
Assume from now on that char $\mathbb{F} \neq 2, 3$ and $\omega \in \mathbb{F}$.

Let (S, \ast, n) be any symmetric composition algebra and consider the corresponding orthogonal Lie algebra:

$$\mathfrak{o}(S, n) = \{d \in \text{End}_\mathbb{F}(S) : n(d(x), y) + n(x, d(y)) = 0 \ \forall x, y \in S\},$$

and the subalgebra of $\mathfrak{o}(S, n)^3$ (with componentwise multiplication):

$$\text{tri}(S, \ast, n) = \{(d_0, d_1, d_2) \in \mathfrak{o}(S, n)^3 : d_0(x \ast y) = d_1(x) \ast y + x \ast d_2(y) \ \forall x, y\}$$

This is the triality Lie algebra.
Assume from now on that char $\mathbb{F} \neq 2, 3$ and $\omega \in \mathbb{F}$.

Let $(S, *, n)$ be any symmetric composition algebra and consider the corresponding orthogonal Lie algebra:

$$\mathfrak{o}(S, n) = \{ d \in \text{End}_\mathbb{F}(S) : n(d(x), y) + n(x, d(y)) = 0 \ \forall x, y \in S \},$$

and the subalgebra of $\mathfrak{o}(S, n)^3$ (with componentwise multiplication):

$$\mathfrak{tri}(S, *, n) = \{ (d_0, d_1, d_2) \in \mathfrak{o}(S, n)^3 : d_0(x* y) = d_1(x)* y + x* d_2(y) \ \forall x, y \}$$

This is the triality Lie algebra.

The map: $\theta : \mathfrak{tri}(S, *, n) \rightarrow \mathfrak{tri}(S, *, n), \ (d_0, d_1, d_2) \mapsto (d_2, d_0, d_1)$ is an automorphism of order 3.
Principle of Local Triality

Theorem (Principle of Local Triality)

Let \((S, \ast, n)\) be an eight dimensional symmetric composition algebra. Then the projection \(\pi_0: \text{tri}(S, \ast, n) \rightarrow o(S, n) = (d_0, d_1, d_2) \mapsto d_0\) is an isomorphism of Lie algebras.
Principle of Local Triality

Theorem (Principle of Local Triality)

Let \((S, \ast, n)\) be an eight dimensional symmetric composition algebra. Then the projection

\[\pi_0 : \text{tri}(S, \ast, n) \rightarrow \text{o}(S, n)\]

\[(d_0, d_1, d_2) \mapsto d_0,\]

is an isomorphism of Lie algebras.
Gradings on D_4

By taking together gradings on a symmetric composition algebra and the order 3 automorphism given by triality, one obtains the following gradings on D_4:

Theorem

A $\mathbb{Z}_3 \times \mathbb{Z}_2$-grading of a para-Cayley algebra (\overline{C}, \cdot, n) induces a $\mathbb{Z}_3 \times \mathbb{Z}_2$-grading of the orthogonal Lie algebra $o(C, n)$ of type $(14, 7)$.

The standard \mathbb{Z}_2-grading on an Okubo algebra $(O, *, n)$ induces a \mathbb{Z}_3-grading on the orthogonal Lie algebra $o(O, n)$ of type $(24, 2)$.

Remark

A $\mathbb{Z}_3 \times \mathbb{Z}_2$-grading of a para-Cayley algebra (\overline{C}, \cdot, n) also induces a \mathbb{Z}_3-grading of its Lie algebra of derivations (which is an exceptional simple Lie algebra of type G_2). The type of this grading is $(0, 7)$.
Gradings on D_4

By taking together gradings on a symmetric composition algebra and the order 3 automorphism given by triality, one obtains the following gradings on D_4:
Gradings on D_4

By taking together gradings on a symmetric composition algebra and the order 3 automorphism given by triality, one obtains the following gradings on D_4:

Theorem

- A \mathbb{Z}_2^3-grading of a para-Cayley algebra (\bar{C}, \bullet, n) induces a $\mathbb{Z}_2^3 \times \mathbb{Z}_3$-grading of the orthogonal Lie algebra $\mathfrak{o}(C, n)$ of type (14, 7).
- The standard \mathbb{Z}_3^2-grading on an Okubo algebra (\mathcal{O}, \ast, n) induces a \mathbb{Z}_3^3-grading on the orthogonal Lie algebra $\mathfrak{o}(\mathcal{O}, n)$ of type (24, 2).
Gradings on D_4

By taking together gradings on a symmetric composition algebra and the order 3 automorphism given by triality, one obtains the following gradings on D_4:

Theorem

- A \mathbb{Z}_2^3-grading of a para-Cayley algebra $(\overline{C}, \bullet, n)$ induces a $\mathbb{Z}_2^3 \times \mathbb{Z}_3$-grading of the orthogonal Lie algebra $\mathfrak{o}(C, n)$ of type $(14, 7)$.
- The standard \mathbb{Z}_3^2-grading on an Okubo algebra (\mathcal{O}, \ast, n) induces a \mathbb{Z}_3^3-grading on the orthogonal Lie algebra $\mathfrak{o}(\mathcal{O}, n)$ of type $(24, 2)$.

Remark

A \mathbb{Z}_2^3-grading of a para-Cayley algebra $(\overline{C}, \bullet, n)$ also induces a \mathbb{Z}_2^3-grading of its Lie algebra of derivations (which is an exceptional simple Lie algebra of type G_2). The type of this grading is $(0, 7)$.
Let (S, \ast, n) and (S', \star, n') be two symmetric composition algebras. One can construct a Lie algebra as follows:

$$g = g(S, S') = \text{tri}(S) \oplus \text{tri}(S') \oplus \bigoplus_{i=0}^{2} \iota_i(x \otimes x')$$

with bracket given by:

- the Lie bracket in $\text{tri}(S) \oplus \text{tri}(S')$, which thus becomes a Lie subalgebra of g,

$$\left[(d_0, d_1, d_2), \iota_i(x \otimes x') \right] = \iota_i(d_i(x) \otimes x'),$$

$$\left[(d_0', d_1', d_2'), \iota_i(x \otimes x') \right] = \iota_i(x \otimes d_i'(x')),$$

$$\left[\iota_i(x \otimes x'), \iota_i+1(y \otimes y') \right] = \iota_{i+2}((x \ast y) \otimes (x' \star y')) \pmod{3},$$

$$\left[\iota_i(x \otimes x'), \iota_i(y \otimes y') \right] = n'(x', y') \theta_i(t x, y) + n(x, y) \theta'_i(t' x', y'),$$
Freudenthal Magic Square

Let \((S, *, n)\) and \((S', *, n')\) be two symmetric composition algebras. One can construct a Lie algebra as follows:

\[
g = g(S, S') = (\text{tri}(S) \oplus \text{tri}(S')) \oplus \left(\bigoplus_{i=0}^{2} \iota_i(S \otimes S') \right),
\]

with bracket given by:

- the Lie bracket in \(\text{tri}(S) \oplus \text{tri}(S')\), which thus becomes a Lie subalgebra of \(g\),

- \([\left(d_0, d_1, d_2 \right), \iota_i(x \otimes x')] = \iota_i(d_i(x) \otimes x')\),

- \([\left(d'_0, d'_1, d'_2 \right), \iota_i(x \otimes x')] = \iota_i(x \otimes d'_i(x'))\),

- \([\iota_i(x \otimes x') , \iota_{i+1}(y \otimes y')] = \iota_{i+2}((x * y) \otimes (x' * y')) \) (indices modulo 3),

- \([\iota_i(x \otimes x') , \iota_i(y \otimes y')] = n'(x', y')\theta^i(t_{x,y}) + n(x, y)\theta'^i(t'_{x',y'}),\)
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1</td>
<td>A2</td>
<td>C3</td>
</tr>
<tr>
<td>2</td>
<td>A2</td>
<td>A2</td>
<td>⊕</td>
</tr>
<tr>
<td>4</td>
<td>C3</td>
<td>A5</td>
<td>D6</td>
</tr>
<tr>
<td>8</td>
<td>E4</td>
<td>E6</td>
<td>E7</td>
</tr>
</tbody>
</table>

Alberto Elduque (Universidad de Zaragoza) Exceptional Jordan gradings July 2009
Freudenthal Magic Square

<table>
<thead>
<tr>
<th>(g(S, S'))</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(dim S)</td>
<td>(A_1)</td>
<td>(A_2)</td>
<td>(C_3)</td>
<td>(F_4)</td>
</tr>
<tr>
<td>2</td>
<td>(A_2 \oplus A_2)</td>
<td>(A_5)</td>
<td>(E_6)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(C_3)</td>
<td>(A_5)</td>
<td>(D_6)</td>
<td>(E_7)</td>
</tr>
<tr>
<td>8</td>
<td>(F_4)</td>
<td>(E_6)</td>
<td>(E_7)</td>
<td>(E_8)</td>
</tr>
</tbody>
</table>
The Lie algebra $g(S, S')$ is naturally $\mathbb{Z}_2 \times \mathbb{Z}_2$-graded with $g(\bar{0}, \bar{0}) = \text{tri}(S) \oplus \text{tri}(S')$, $g(\bar{1}, \bar{0}) = \iota_0(S \otimes S')$, $g(\bar{0}, \bar{1}) = \iota_1(S \otimes S')$, and $g(\bar{1}, \bar{1}) = \iota_2(S \otimes S')$.

Also, the order 3 automorphisms θ and θ' extend to an order 3 automorphism Θ of $g(S, S')$. The eigenspaces of Θ constitute a \mathbb{Z}_3-grading of $g(S, S')$.
The Lie algebra \(g(S, S') \) is naturally \(\mathbb{Z}_2 \times \mathbb{Z}_2 \)-graded with

\[
\begin{align*}
g(\bar{0}, \bar{0}) &= \text{tri}(S) \oplus \text{tri}(S'), \\
g(\bar{1}, \bar{0}) &= \iota_0(S \otimes S'), \\
g(\bar{0}, \bar{1}) &= \iota_1(S \otimes S'), \\
g(\bar{1}, \bar{1}) &= \iota_2(S \otimes S').
\end{align*}
\]
The Lie algebra $\mathfrak{g}(S, S')$ is naturally $\mathbb{Z}_2 \times \mathbb{Z}_2$-graded with

$$
\begin{align*}
\mathfrak{g}(\bar{0}, \bar{0}) &= \text{tri}(S) \oplus \text{tri}(S'), \\
\mathfrak{g}(\bar{1}, \bar{0}) &= \iota_0(S \otimes S'), \\
\mathfrak{g}(\bar{0}, \bar{1}) &= \iota_1(S \otimes S'), \\
\mathfrak{g}(\bar{1}, \bar{1}) &= \iota_2(S \otimes S').
\end{align*}
$$

Also, the order 3 automorphisms θ and θ' extend to an order 3 automorphism Θ of $\mathfrak{g}(S, S')$. The eigenspaces of Θ constitute a \mathbb{Z}_3-grading of $\mathfrak{g}(S, S')$.
1. Jordan subgroups

2. Composition algebras

3. Freudenthal Magic Square

4. Exceptional Jordan gradings
Induced gradings

From now on, assume that our ground field F is algebraically closed of characteristic 0.

The previous \mathbb{Z}_2^2 and \mathbb{Z}_3-gradings on the Lie algebras $g(S, S')$ can be complemented with gradings on the symmetric composition algebras S and S' in several ways. The \mathbb{Z}_3^3-grading on the Okubo algebra O induces a \mathbb{Z}_3^3-grading on both the simple Lie algebra $g(F, O)$ of type F_4 and the simple Lie algebra $g(S, O)$ (for the two-dimensional para-Hurwitz algebra S) of type E_6. In both cases $g_0 = 0$ and $g_\alpha \oplus g_{-\alpha}$ is a Cartan subalgebra of g for any $0 \neq \alpha \in \mathbb{Z}_3^3$.

The \mathbb{Z}_3^2-grading on a para-Cayley algebra \bar{C} induces a \mathbb{Z}_5^2-grading on the simple Lie algebra $g(\bar{C}, \bar{C})$ of type E_8. Moreover, $g_0 = 0$ and g_α is a Cartan subalgebra of g for any $0 \neq \alpha \in \mathbb{Z}_5^2$.

Alberto Elduque (Universidad de Zaragoza)
Induced gradings

(From now on, assume that our ground field \mathbb{F} is algebraically closed of characteristic 0.)
Induced gradings

(From now on, assume that our ground field \mathbb{F} is algebraically closed of characteristic 0.)

The previous \mathbb{Z}_2^2 and \mathbb{Z}_3-gradings on the Lie algebras $\mathfrak{g}(S, S')$ can be complemented with gradings on the symmetric composition algebras S and S' in several ways.
Induced gradings

(From now on, assume that our ground field \mathbb{F} is algebraically closed of characteristic 0.)

The previous \mathbb{Z}_2^2 and \mathbb{Z}_3-gradings on the Lie algebras $\mathfrak{g}(S, S')$ can be complemented with gradings on the symmetric composition algebras S and S' in several ways.

- The \mathbb{Z}_2^2-grading on the Okubo algebra \mathcal{O} induces a \mathbb{Z}_3^3-grading on both the simple Lie algebra $\mathfrak{g}(\mathbb{F}, \mathcal{O})$ of type F_4 and the simple Lie algebra $\mathfrak{g}(S, \mathcal{O})$ (for the two-dimensional para-Hurwitz algebra S) of type E_6.
 In both cases $\mathfrak{g}_0 = 0$ and $\mathfrak{g}_\alpha \oplus \mathfrak{g}_{-\alpha}$ is a Cartan subalgebra of \mathfrak{g} for any $0 \neq \alpha \in \mathbb{Z}_3^3$.

Induced gradings

(From now on, assume that our ground field \mathbb{F} is algebraically closed of characteristic 0.)

The previous \mathbb{Z}_2^2 and \mathbb{Z}_3-gradings on the Lie algebras $\mathfrak{g}(S, S')$ can be complemented with gradings on the symmetric composition algebras S and S' in several ways.

- The \mathbb{Z}_3^2-grading on the Okubo algebra \mathcal{O} induces a \mathbb{Z}_3^3-grading on both the simple Lie algebra $\mathfrak{g}(\mathbb{F}, \mathcal{O})$ of type F_4 and the simple Lie algebra $\mathfrak{g}(S, \mathcal{O})$ (for the two-dimensional para-Hurwitz algebra S) of type E_6.
 In both cases $\mathfrak{g}_0 = 0$ and $\mathfrak{g}_\alpha \oplus \mathfrak{g}_{-\alpha}$ is a Cartan subalgebra of \mathfrak{g} for any $0 \neq \alpha \in \mathbb{Z}_3^3$.

- The \mathbb{Z}_2^3-grading on a para-Cayley algebra $\tilde{\mathcal{C}}$ induces a \mathbb{Z}_2^5-grading on the simple Lie algebra $\mathfrak{g}(\tilde{\mathcal{C}}, \tilde{\mathcal{C}})$ of type E_8.
 Moreover, $\mathfrak{g}_0 = 0$ and \mathfrak{g}_α is a Cartan subalgebra of \mathfrak{g} for any $0 \neq \alpha \in \mathbb{Z}_2^5$.
Theorem

The previous gradings:

1. A grading on the simple Lie algebra of type G_2 induced by the $\mathbb{Z}_3 \oplus \mathbb{Z}_2$-grading of the Cayley algebra,

2. A grading on the simple Lie algebra of type D_4 induced by the $\mathbb{Z}_3 \oplus \mathbb{Z}_2$-grading of the Cayley algebra,

3. A grading on the simple Lie algebra of type F_4 induced by the $\mathbb{Z}_2 \oplus \mathbb{Z}_3$-grading of the Okubo algebra,

4. A grading on the simple Lie algebra of type E_6 induced by the $\mathbb{Z}_2 \oplus \mathbb{Z}_3$-grading of the Okubo algebra,

5. A grading on the simple Lie algebra of type E_8 induced by the $\mathbb{Z}_3 \oplus \mathbb{Z}_2$-grading of the Cayley algebra,

are exceptional Jordan gradings.
The previous gradings:
Theorem

The previous gradings:

1. A \mathbb{Z}_2^3-grading on the simple Lie algebra of type G_2 induced by the \mathbb{Z}_2^3-grading of the Cayley algebra,
Theorem

The previous gradings:

1. a \mathbb{Z}_2^3-grading on the simple Lie algebra of type G_2 induced by the \mathbb{Z}_2^3-grading of the Cayley algebra,

2. a \mathbb{Z}_2^3-grading on the simple Lie algebra of type D_4 induced by the \mathbb{Z}_2^3-grading of the Cayley algebra,
The previous gradings:

1. A \mathbb{Z}_2^3-grading on the simple Lie algebra of type G_2 induced by the \mathbb{Z}_2^3-grading of the Cayley algebra,

2. A \mathbb{Z}_2^3-grading on the simple Lie algebra of type D_4 induced by the \mathbb{Z}_2^3-grading of the Cayley algebra,

3. A \mathbb{Z}_3^3-grading on the simple Lie algebra of type F_4 induced by the \mathbb{Z}_3^2-grading of the Okubo algebra,
The previous gradings:

1. A \(\mathbb{Z}_2^3 \)-grading on the simple Lie algebra of type \(G_2 \) induced by the \(\mathbb{Z}_2^3 \)-grading of the Cayley algebra,

2. A \(\mathbb{Z}_2^3 \)-grading on the simple Lie algebra of type \(D_4 \) induced by the \(\mathbb{Z}_2^3 \)-grading of the Cayley algebra,

3. A \(\mathbb{Z}_3^3 \)-grading on the simple Lie algebra of type \(F_4 \) induced by the \(\mathbb{Z}_3^2 \)-grading of the Okubo algebra,

4. A \(\mathbb{Z}_3^3 \)-grading on the simple Lie algebra of type \(E_6 \) induced by the \(\mathbb{Z}_3^2 \)-grading of the Okubo algebra,
Theorem

The previous gradings:

1. a \(\mathbb{Z}_2^3 \)-grading on the simple Lie algebra of type \(G_2 \) induced by the \(\mathbb{Z}_2^3 \)-grading of the Cayley algebra,
2. a \(\mathbb{Z}_2^3 \)-grading on the simple Lie algebra of type \(D_4 \) induced by the \(\mathbb{Z}_2^3 \)-grading of the Cayley algebra,
3. a \(\mathbb{Z}_3^3 \)-grading on the simple Lie algebra of type \(F_4 \) induced by the \(\mathbb{Z}_3^2 \)-grading of the Okubo algebra,
4. a \(\mathbb{Z}_3^3 \)-grading on the simple Lie algebra of type \(E_6 \) induced by the \(\mathbb{Z}_3^2 \)-grading of the Okubo algebra,
5. a \(\mathbb{Z}_2^5 \)-grading on the simple Lie algebra of type \(E_8 \) induced by the \(\mathbb{Z}_2^3 \)-grading of the Cayley algebra,
Theorem

The previous gradings:

1. a \mathbb{Z}_2^3-grading on the simple Lie algebra of type G_2 induced by the \mathbb{Z}_2^3-grading of the Cayley algebra,

2. a \mathbb{Z}_2^3-grading on the simple Lie algebra of type D_4 induced by the \mathbb{Z}_2^3-grading of the Cayley algebra,

3. a \mathbb{Z}_3^3-grading on the simple Lie algebra of type F_4 induced by the \mathbb{Z}_3^2-grading of the Okubo algebra,

4. a \mathbb{Z}_3^3-grading on the simple Lie algebra of type E_6 induced by the \mathbb{Z}_3^2-grading of the Okubo algebra,

5. a \mathbb{Z}_2^5-grading on the simple Lie algebra of type E_8 induced by the \mathbb{Z}_2^3-grading of the Cayley algebra,
Exceptional Jordan gradings

Theorem

The previous gradings:

1. A \(\mathbb{Z}_2^3 \)-grading on the simple Lie algebra of type \(G_2 \) induced by the \(\mathbb{Z}_2^3 \)-grading of the Cayley algebra,

2. A \(\mathbb{Z}_2^3 \)-grading on the simple Lie algebra of type \(D_4 \) induced by the \(\mathbb{Z}_2^3 \)-grading of the Cayley algebra,

3. A \(\mathbb{Z}_3^3 \)-grading on the simple Lie algebra of type \(F_4 \) induced by the \(\mathbb{Z}_3^2 \)-grading of the Okubo algebra,

4. A \(\mathbb{Z}_3^3 \)-grading on the simple Lie algebra of type \(E_6 \) induced by the \(\mathbb{Z}_3^2 \)-grading of the Okubo algebra,

5. A \(\mathbb{Z}_2^5 \)-grading on the simple Lie algebra of type \(E_8 \) induced by the \(\mathbb{Z}_2^3 \)-grading of the Cayley algebra,

are exceptional Jordan gradings.
Only one exceptional Jordan grading does not fit in the Theorem above: the \mathbb{Z}_5-grading on E_8.

Let V_1 and V_2 be two vector spaces over F of dimension 5, and consider the \mathbb{Z}_5-graded vector space $g = \bigoplus_{i=0}^4 g_{\bar{i}}$, where $g_{\bar{0}} = \mathfrak{sl}(V_1) \oplus \mathfrak{sl}(V_2)$, $g_{\bar{1}} = V_1 \otimes \bigwedge^2 V_2$, $g_{\bar{2}} = \bigwedge^2 V_1 \otimes \bigwedge^4 V_2$, $g_{\bar{3}} = \bigwedge^3 V_1 \otimes V_2$, $g_{\bar{4}} = \bigwedge^4 V_1 \otimes \bigwedge^3 V_2$.

This is a \mathbb{Z}_5-graded Lie algebra in a unique way: the exceptional simple Lie algebra of type E_8.

Alberto Elduque (Universidad de Zaragoza) Exceptional Jordan gradings July 2009 29 / 32
The missing exceptional Jordan grading

Only one exceptional Jordan grading does not fit in the Theorem above: the \mathbb{Z}_5^3-grading on E_8.

Alberto Elduque (Universidad de Zaragoza)
The missing exceptional Jordan grading

Only one exceptional Jordan grading does not fit in the Theorem above: the \mathbb{Z}_3^5-grading on E_8.

Let V_1 and V_2 be two vector spaces over \mathbb{F} of dimension 5, and consider the \mathbb{Z}_5-graded vector space

$$G = \bigoplus_{i=0}^{4} G_i,$$

where

$$G_0 = sl(V_1) \oplus sl(V_2),$$

$$G_1 = V_1 \otimes \wedge^2 V_2,$$

$$G_2 = \wedge^2 V_1 \otimes \wedge^4 V_2,$$

$$G_3 = \wedge^3 V_1 \otimes V_2,$$

$$G_4 = \wedge^4 V_1 \otimes \wedge^3 V_2.$$

This is a \mathbb{Z}_5-graded Lie algebra in a unique way: the exceptional simple Lie algebra of type E_8.
The missing exceptional Jordan grading

Up to conjugation in $\text{Aut} g$, there is a unique order 5 automorphism of the simple Lie algebra g of type E_8 such that the dimension of the subalgebra of fixed elements is 48.

This uniqueness shows us that, up to conjugation, this is the automorphism of g such that its restriction to \bar{g} is ξ times the identity, where ξ is a fixed primitive fifth root of unity.
Up to conjugation in $\text{Aut}\, \mathfrak{g}$, there is a unique order 5 automorphism of the simple Lie algebra \mathfrak{g} of type E_8 such that the dimension of the subalgebra of fixed elements is 48.

The uniqueness shows us that, up to conjugation, this is the automorphism of \mathfrak{g} such that its restriction to $\mathfrak{g}_{\bar{i}}$ is ξ_i times the identity, where ξ is a fixed primitive fifth root of unity.
Up to conjugation in $\text{Aut} \, \mathfrak{g}$, there is a unique order 5 automorphism of the simple Lie algebra \mathfrak{g} of type E_8 such that the dimension of the subalgebra of fixed elements is 48.

![Diagram showing a grading of the Lie algebra E_8 with indices 1, 2, 3, 4, 5, 6, 4, 2, and 3, where 5 is the fixed element under the automorphism.]
Up to conjugation in $\text{Aut} \, \mathfrak{g}$, there is a unique order 5 automorphism of the simple Lie algebra \mathfrak{g} of type E_8 such that the dimension of the subalgebra of fixed elements is 48.

The uniqueness shows us that, up to conjugation, this is the automorphism of \mathfrak{g} such that its restriction to \mathfrak{g}_i is ξ^i times the identity, where ξ is a fixed primitive fifth root of unity.
The missing exceptional Jordan grading

Consider the following automorphisms σ_1, σ_2, σ_3 of g:

$\sigma_1(x) = \xi_ix$ for any $x \in g_0$ and $0 \leq i \leq 4$,

$\sigma_2|_{g_1} = b_1 \otimes \wedge^2 b_2$,

$\sigma_3|_{g_1} = c_1 \otimes \wedge^2 c_2$,

where on fixed bases of V_1 and V_2, the coordinate matrices of b_1, c_1, b_2, c_2 are:

$b_1 \leftrightarrow \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & \xi_0 & 0 & 0 \\
0 & 0 & 0 & \xi_2 & 0 \\
0 & 0 & 0 & 0 & \xi_3 \\
0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}$,

$c_1 \leftrightarrow \begin{pmatrix}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
\end{pmatrix}$,

$b_2 \leftrightarrow \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & \xi_2 & 0 & 0 \\
0 & 0 & 0 & \xi_4 & 0 \\
0 & 0 & 0 & 0 & \xi_0 \\
0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}$,

$c_2 \leftrightarrow \begin{pmatrix}
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
\end{pmatrix}$.
Consider the following automorphisms $\sigma_1, \sigma_2, \sigma_3$ of g:

\[
\begin{align*}
\sigma_1(x) &= \xi^i x \quad \text{for any } x \in g_{\overline{i}} \text{ and } 0 \leq i \leq 4, \\
\sigma_2|_{g_{\overline{1}}} &= b_1 \otimes \wedge^2 b_2, \\
\sigma_3|_{g_{\overline{1}}} &= c_1 \otimes \wedge^2 c_2,
\end{align*}
\]
Consider the following automorphisms $\sigma_1, \sigma_2, \sigma_3$ of \mathfrak{g}:

\[
\sigma_1(x) = \xi^i x \quad \text{for any } x \in \mathfrak{g}_i \text{ and } 0 \leq i \leq 4,
\]

\[
\sigma_2|_{\mathfrak{g}_1} = b_1 \otimes \wedge^2 b_2,
\]

\[
\sigma_3|_{\mathfrak{g}_1} = c_1 \otimes \wedge^2 c_2,
\]

where on fixed bases of V_1 and V_2, the coordinate matrices of b_1, c_1, b_2, c_2 are:

\[
\begin{align*}
 b_1 & \leftrightarrow \begin{pmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & \xi & 0 & 0 & 0 \\
 0 & 0 & \xi^2 & 0 & 0 \\
 0 & 0 & 0 & \xi^3 & 0 \\
 0 & 0 & 0 & 0 & \xi^4
 \end{pmatrix}, &
 c_1 & \leftrightarrow \begin{pmatrix}
 0 & 0 & 0 & 0 & 1 \\
 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0
 \end{pmatrix},
\end{align*}
\]

\[
\begin{align*}
 b_2 & \leftrightarrow \begin{pmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & \xi^2 & 0 & 0 & 0 \\
 0 & 0 & \xi^4 & 0 & 0 \\
 0 & 0 & 0 & \xi^3 & 0 \\
 0 & 0 & 0 & 0 & \xi^0
 \end{pmatrix}, &
 c_2 & \leftrightarrow \begin{pmatrix}
 0 & 0 & 0 & 0 & 1 \\
 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0
 \end{pmatrix}.
\end{align*}
\]
The missing exceptional Jordan grading

The grading of E_8 induced by the order 5 commuting automorphisms $\sigma_1, \sigma_2, \sigma_3$ is the Jordan grading over \mathbb{Z}_{3^5}.

$\forall 0 \neq \alpha \in \mathbb{Z}_{3^5}, \bigoplus_{i=1}^{4} g_{\alpha}$ is a Cartan subalgebra of g.

There are models of the Jordan gradings of F_4 and E_6 over \mathbb{Z}_{3^3} constructed along the same lines.

That's all. Thanks.
The missing exceptional Jordan grading

Theorem

The grading of E_8 induced by the order 5 commuting automorphisms $\sigma_1, \sigma_2, \sigma_3$ is the Jordan grading over \mathbb{Z}_5^3.

∀ $0 \neq \alpha \in \mathbb{Z}_5^3$, $\bigoplus_{i=1}^{4} g_i \alpha$ is a Cartan subalgebra of g.

There are models of the Jordan gradings of F_4 and E_6 over \mathbb{Z}_3^3 constructed along the same lines.

That's all. Thanks
The grading of E_8 induced by the order 5 commuting automorphisms $\sigma_1, \sigma_2, \sigma_3$ is the Jordan grading over \mathbb{Z}_5^3.

\[\forall 0 \neq \alpha \in \mathbb{Z}_5^3, \bigoplus_{i=1}^{4} g_{i\alpha} \text{ is a Cartan subalgebra of } g. \]
The grading of E_8 induced by the order 5 commuting automorphisms $\sigma_1, \sigma_2, \sigma_3$ is the Jordan grading over \mathbb{Z}_5^3.

$$\forall 0 \neq \alpha \in \mathbb{Z}_5^3, \oplus_{i=1}^{4} g_{i\alpha} \text{ is a Cartan subalgebra of } g.$$

There are models of the Jordan gradings of F_4 and E_6 over \mathbb{Z}_3^3 constructed along the same lines.
Theorem

The grading of E_8 induced by the order 5 commuting automorphisms $\sigma_1, \sigma_2, \sigma_3$ is the Jordan grading over \mathbb{Z}_5^3.

\[\forall 0 \neq \alpha \in \mathbb{Z}_5^3, \bigoplus_{i=1}^4 g_{i\alpha} \text{ is a Cartan subalgebra of } g. \]

There are models of the Jordan gradings of F_4 and E_6 over \mathbb{Z}_3^3 constructed along the same lines.

That’s all. Thanks