La Ley de Gauss

I. Flujo de un campo vectorial e integral vectorial de superficie.

Curso 2003 - 2004.

El flujo de un campo vectorial É a través de una superficie S representa el número de líneas de fuerza que atraviesan la superficie. Si el campo vectorial es uniforme (\vec{E} es constante en módulo, dirección y sentido) y S es una superficie plana, el flujo se calcula matemáticamente como el producto escalar de \vec{E} por el vector superficie \vec{S}

$$\Phi_{\rm E} = \vec{\rm E} \cdot \vec{\rm S} = \vec{\rm E} \cdot {\rm S} \cdot \vec{\rm n} = \left| \vec{\rm E} \right| \cdot {\rm S} \cdot \left| \vec{\rm n} \right| \cdot \cos \alpha = \left| \vec{\rm E} \right| \cdot {\rm S} \cdot \cos \alpha \quad \left[\frac{N \cdot m^2}{C} \right]$$

Cuando el campo vectorial es variable y/o la superficie no es plana, esta se divide en pequeños trozos que se consideran planos y en los que el vector E se supone constante. El flujo total será la suma del flujo para cada una de los trozos de superficie. Si, por ejemplo, el número de divisiones de la superficie es de n = 4,

$$\Phi_{E} = \Phi_{E1} + \Phi_{E2} + \Phi_{E3} + \Phi_{E4} = \sum_{i=1}^{4} \Phi_{i} = \sum_{i=1}^{4} \vec{E}_{i} \cdot \vec{S}_{i} = \vec{E}_{1} \cdot \vec{S}_{1} + \vec{E}_{2} \cdot \vec{S}_{2} + \vec{E}_{3} \cdot \vec{S}_{3} + \vec{E}_{4} \cdot \vec{S}_{4} =$$

$$= |\vec{E}_{1}| \cdot S_{1} \cdot \cos \alpha_{1} + |\vec{E}_{2}| \cdot S_{2} \cdot \cos \alpha_{2} + |\vec{E}_{3}| \cdot S_{3} \cdot \cos \alpha_{3} + |\vec{E}_{4}| \cdot S_{4} \cdot \cos \alpha_{4}$$

El valor exacto del flujo se obtiene cuando la superficie se divide en un número n muy grande $(n \to \infty)$ de trozos muy pequeños de superficie (elementos diferenciales de superficie, ds)

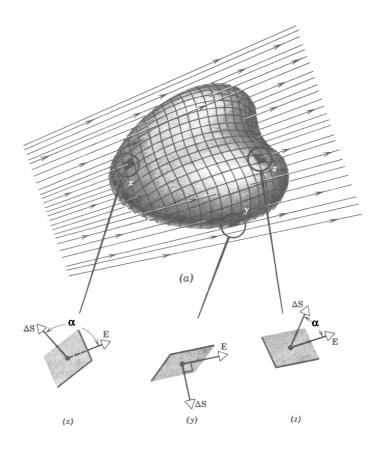
$$\mathbf{\Phi}_{E} = \sum_{i=1}^{n} \mathbf{\Phi}_{Ei} = \sum_{i=1}^{n} \left| \vec{E}_{i} \right| \cdot \mathbf{S}_{i} \cdot \cos \alpha_{i}$$

 $si n \rightarrow \infty$

$$\Phi_{\rm E} = \sum_{\rm i=1}^{\infty} \Phi_{\rm Ei} = \sum_{\rm i=1}^{\infty} \left| \vec{E}_{\rm i} \right| \cdot \Delta S_{\rm i} \cdot \cos \alpha_{\rm i} =$$

$$= \int_{S} |\vec{E}| \cdot ds \cdot \cos \alpha =$$

$$= \int_{S} |\vec{E}| \cdot |\vec{n}| \cdot ds \cdot \cos \alpha = \int_{S} \vec{E} \cdot d\vec{s}$$



II. Vector Desplazamiento Eléctrico D.

Curso 2003 - 2004.

El vector desplazamiento eléctrico o densidad de flujo eléctrico, D, se obtiene multiplicando el vector intensidad de campo eléctrico \vec{E} por la permitividad dieléctrica del vacío ε_0 ,

$$\varepsilon_0 = 8.85 \cdot 10^{-12} \frac{C^2}{\text{N} \cdot \text{m}^2} \qquad \qquad \vec{D} = \varepsilon_0 \cdot \vec{E} \left[\frac{C}{m^2} \right]$$

Así como el vector \vec{E} representa una fuerza sobre la unidad de carga positiva, al vector \vec{D} no siempre se le puede dar un significado físico directo. Sus unidades son las mismas que las de la densidad superficial de carga σ_s ; en las superficies de los conductores, el módulo de \vec{D} y el valor absoluto de σ_s coinciden, $|\vec{D}| = |\sigma_s|$. Por ser el vector \vec{D} un vector paralelo al vector \vec{E} , las líneas de fuerza asociadas al vector \vec{D} serán iguales a las que se dibujan para representar el campo eléctrico.

III. Enunciado de la Ley de Gauss.

"El flujo del vector desplazamiento eléctrico D a través de una superficie cerrada arbitraria S, es igual a la carga real encerrada por dicha superficie."

$$\Phi_{D} = \oint_{S} \vec{D} \cdot d\vec{S} = \oint_{S} \vec{D} \cdot \vec{n} \cdot dS = q_{\text{real encerrada por S}}$$

- $q_{\text{ real encerrada}}$ es la carga neta (el número de protones o electrones en exceso que hay en el interior de la superficie); si la superficie encierra dos cargas q_+ y q_- con $|q_+| = |q_-|$, el flujo total será cero.
- \vec{n} es el vector normal saliente a la superficie cerrada S.
- El hecho de que el flujo sea cero no implica que el vector desplazamiento eléctrico D en todos los puntos de la superficie S sea cero.
- Solo hay que considerar las cargas en el interior de la superficie S, aunque el vector desplazamiento eléctrico \vec{D} sea debido también a otras cargas (o distribuciones de cargas) que se encuentran en el exterior.

IV. Aplicación al cálculo de E.

La ley de Gauss se utilizará como herramienta para calcular el módulo de \vec{E} , $|\vec{E}|$, cuando podamos plantear la integral de flujo de \vec{D} , Φ_{D} , a través de una superficie cerrada (superficie gaussiana) y calcular la carga real encerrada por esa superficie. Esto solo se podrá hacer en muy pocos casos; se tratarán de flujos asociados a distribuciones infinitas y/o simétricas de carga.

La dirección y sentido del vector \vec{E} y \vec{D} deberán deducirse de un análisis vectorial, aplicando la ley de Coulomb y el ppo. de superposición.