Embedding l_{p}^{n} into r-Banach spaces, $0<r \leq p<2$

by
Jesús Bastero and Julio Bernués*
Departamento de Matemáticas
Facultad de Ciencias
50009 Zaragoza (Spain)

0. Introduction. Previous results.

Given $(X,\|\cdot\|),(Y,\| \| \cdot\| \|)$ two quasi-Banach spaces and $0<\varepsilon<1$, we say that $X(1+\varepsilon)$-embedds into Y if there is a one-to-one linear map $T: X \rightarrow Y$ such that $1-\varepsilon \leq \frac{\|\mid T(x)\| \|}{\|x\|} \leq 1+\varepsilon$. We will denote this fact by the diagram $X \stackrel{1+\varepsilon}{\hookrightarrow} Y$.

Lately, some authors have been investigating questions from the Local Theory in the context of quasi-Banach spaces. In [2] and [3] the analogue of Dvoretzky's theorem on quasi-Banach spaces is proved. For non-spherical sections we only know answers in particular cases. In [5] the authors show that if $0<r<p<2, r \leq 1$, $\ell_{p}^{k} \stackrel{1+\varepsilon}{\hookrightarrow} \ell_{r}^{n}$ provided that $n \geq C(\varepsilon, r, p) k$.

In this paper we obtain an analogue of the main results in [13] and give general estimates for the size of ℓ_{p}^{k}-sections of any r-Banach space in terms of the stable-type constant. The main ideas of the proofs (use of p-stable random variables, deviation inequalities...) are the same as the ones used in [13]. In some cases Pisier's ideas adapt to the r-Banach case; in some others the extension is not obvious at all. As a corollary we will re-prove the result in [5] quoted above. We do this in sections 1 and 2. In section 3 we study the set $\left\{p \mid \ell_{p}^{n} \stackrel{1+\varepsilon}{\hookrightarrow} X, \forall n \in \mathbf{N}, \forall 0<\varepsilon<1\right\}, X$ an infinitedimensional r-Banach space. In this way we give a strong version of the Maurey-Pisier

* The two named authors are partially supported by Grant DGICYT PS 87-0059.Ê The second named author is also supported by D.G.A.(Spain)
theorem (see [10]) for the type in r-Banach spaces. An infinite dimensional version of this result has been already proved by N.Kalton [6] using ultrapower techniques. Finally in section 4 we apply the methods used in 1 and 2 to the problem of embedding finite subsets of L_{p} into $\ell_{r}^{n}, 0<r \leq p<2, r \leq 1$ (see section 4 for a definition). In [15] the author proves that any finite subset $T \subset L_{p}, 1 \leq p<2$ with card $T=N$ can be $(1+\varepsilon)$-embedded into ℓ_{p}^{n} provided that $n \geq C(\varepsilon) N \log N$, and it is conjectured that the right estimate is some power of $\log N$. In this last section we improve the results in [15] for particular sets T.

In the sequel $(X,\|\cdot\|)$ will denote an r-Banach space, $0<r<1, p$ will be a real number verifying $0<p<2, r \leq p$.

Definition. A real-valued random variable θ is called p-stable if its Fourier transform is $\mathbb{E}\left(e^{i t \theta}\right)=e^{-|t|^{p}}$.

An interesting property of p-stable random variables is the following: Let $Z=$ $\sum_{i=1}^{n} \theta_{i} x_{i}$ with $x_{i} \in X$ and θ_{i} independent identically distributed (i.i.d.) p-stable random variables. If $\left(Z_{i}\right)_{i=1}^{k}$ are independent copies of Z then for every $\left(a_{i}\right) \in \mathbf{R}^{k}$, $\sum_{i=1}^{k} a_{i} Z_{i} \stackrel{\mathrm{~d}}{=} Z\left(\sum_{i=1}^{k}\left|a_{i}\right|^{p}\right)^{1 / p}$, where $\stackrel{\mathrm{d}}{=}$ means equality in distribution.

There are only p-stable random variables for $0<p \leq 2$. If $0<p<2$, $\mathbb{E}\left\|\sum_{i=1}^{n} \theta_{i} x_{i}\right\|^{s}<\infty \Longleftrightarrow s<p$. Moreover, for every $0<t<s<p,\left(\mathbb{E}\left\|\sum_{i=1}^{n} \theta_{i} x_{i}\right\|^{s}\right)^{1 / s} \leq$ $C(r, s, t, p)\left(\mathbb{E}\left\|\sum_{i=1}^{n} \theta_{i} x_{i}\right\|^{t}\right)^{1 / t}$.

Definition. An r-Banach space X is said to be of stable type p if there is a constant $C>0$, such that for every $n \in \mathbf{N}$ and any vectors $x_{1}, \ldots, x_{n} \in X$

$$
\left(\mathbb{E}\left\|\sum_{i=1}^{n} \theta_{i} x_{i}\right\|^{s}\right)^{1 / s} \leq C\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{1 / p}
$$

where $s=r$ if $r<p$ and $s=\frac{r}{2}$ if $r=p$, and θ_{i} denote i.i.d. p-stable random variables.

The stable-type constant of X denoted by \S is the infimun of the constants C verifying the inequality above.

If we put ε_{i} i.i.d. Rademacher random variables instead of θ_{i}, we obtain the definition of Rademacher type of X.

We recall the following properties of stable type. For more details see [14]:

- Every r-Banach space is of stable type s for every $s \in(0, r)$.
- If X is of stable type s, it is of stable type t for every $t<s$.
- $S T_{p}\left(\ell_{q}^{n}\right)=C_{p, q} n^{1 / q-1 / p}$ for $0<q<p<2$.
- $S T_{p}\left(\ell_{p}^{n}\right) \sim C_{p}(\log n)^{1 / p}$ for $0<p<2$.
- The space ℓ_{p} is of stable type q for every $q<p$, but not of stable type p ($0<p<2$).

We will use the following equivalent definition of \S. For a proof of this equivalence follow Proposition 1.2 in [13].

Proposition 0.1. § is the infimun of the constants $C>0$ such that,

$$
\left(\mathbb{E}\left\|\sum_{i=1}^{n} \theta_{i} x_{i}\right\|^{s}\right)^{1 / s} \leq C n^{1 / p} \sup _{1 \leq i \leq n}\left\|x_{i}\right\|
$$

for every $n \in \mathbf{N}$ and any $x_{1}, \ldots, x_{n} \in X$, where $s=r$ if $r<p$ and $s=r / 2$ if $p=r$.

A more convenient representation for $\sum_{i=1}^{n} \theta_{i} x_{i}$ is known. In order to present it we need to introduce some more notation: Given $x_{1}, \ldots, x_{n} \in X$ let Y be the random variable with distribution $\frac{1}{2 n} \sum_{i=1}^{n}\left(\delta_{x_{i}}+\delta_{-x_{i}}\right)$ and let $\left(Y_{j}\right), j \geq 1$ be independent copies of Y. Let Γ_{j} be the random variable obtained by summing j i.i.d. exponential random variables. The distribution function for Γ_{j} is known to be

$$
\mathbb{P}\left(\Gamma_{j}<t\right)=\int_{0}^{t} \frac{x^{j-1}}{(j-1)!} e^{-x} d x
$$

Theorem 0.2. ([8,9]). For every $0<p<2$ there is a constant $C_{p}>0$ such that

$$
\frac{\sum_{i=1}^{n} \theta_{i} x_{i}}{n^{1 / p}} \stackrel{\mathrm{~d}}{=} C_{p} \sum_{j=1}^{\infty} \Gamma_{j}^{-1 / p} Y_{j}
$$

Notación For every $m \geq 1$, write $S^{(m)}=\sum_{j=1}^{\infty} \Gamma_{j}^{-1 / p} Y_{j}, \quad \tilde{S}^{(m)}=\sum_{j=1}^{\infty} j^{-1 / p} Y_{j}$, and for $i \geq 1, S_{i}^{(m)}=\sum_{j=1}^{\infty} \Gamma_{i j}^{-1 / p} Y_{i j}, \quad \tilde{S}_{i}^{(m)}=\sum_{j=1}^{\infty} j^{-1 / p} Y_{i j}$ where $\Gamma_{i j}$ and $Y_{i j}$ are independent copies of Γ_{j} and Y_{j} respectively.

We compare the moments of order r of linear combinations of $S_{i}^{(m)}$ and $\tilde{S}_{i}^{(m)}$.

Lemma 0.3. Let $0<\frac{(4-p) p}{4}<r \leq p<2$. There is a constant $K_{r, p}>0$ depending on r and p such that for every $\left(a_{i}\right) \in \mathbf{R}^{k}$ and $m \in \mathbf{N}$, we have if $r<p$ and $m \geq 1$ or if $r=p$ and $m \geq 2$,

$$
\left|E\left\|\sum_{i=1}^{k} a_{i} S_{i}^{(m)}\right\|^{r}-\mathbb{E}\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(m)}\right\|^{r}\right| \leq K_{r, p} \sum_{i=1}^{k}\left|a_{i}\right|^{r} \sup _{1 \leq i \leq n}\left\|x_{i}\right\|^{r}
$$

Demostración:

$$
\begin{aligned}
& \left|\mathbb{E}\left\|\sum_{i=1}^{k} a_{i} S_{i}^{(m)}\right\|^{r}-\mathbb{E}\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(m)}\right\|^{r}\right| \leq \mathbb{E}\left\|\sum_{i=1}^{k}\left|a_{i}\right|\left(S_{i}^{(m)}-\tilde{S}_{i}^{(m)}\right)\right\|^{r} \leq \sum_{i=1}^{k}\left|a_{i}\right|^{r} \mathbb{E}\left\|S_{i}^{(m)}-\tilde{S}_{i}^{(m)}\right\|^{r} \\
& \leq \sum_{i=1}^{k}\left|a_{i}\right|^{r} \mathbb{E}\left\|\sum_{j=1}^{\infty}\left|\frac{1}{\Gamma_{j}^{1 / p}}-\frac{1}{j^{1 / p}}\right| Y_{i j}\right\|^{r} \leq \sum_{i=1}^{k}\left|a_{i}\right|^{r} \mathbb{E} \sum_{j=1}^{\infty}\left|\frac{1}{\Gamma_{j}^{1 / p}}-\frac{1}{j^{1 / p}}\right|^{r}\left\|Y_{i j}\right\|^{r}
\end{aligned}
$$

It is enough to study the convergence of the series $I_{m}=\sum_{j=1}^{\infty} \mathbb{E}\left|\Gamma_{j}^{-1 / p}-j^{-1 / p}\right|^{r}$. We know an expression for the distribution function of Γ_{j} so that we just have to estimate

$$
I_{m}=\int_{0}^{\infty} \sum_{j=1}^{\infty}\left|x^{1 / p}-j^{1 / p}\right|^{r} \frac{x^{j-1}}{(j-1)!} e^{-x} d x
$$

By using Stirling's formula and the change of variable $\frac{x}{j}=t$ the formula above reduces to

$$
\int_{0}^{\infty}\left|1-t^{1 / p}\right|^{r} \frac{1}{t} \sum_{j=1}^{\infty}\left(\frac{t}{e^{t-1}}\right)^{j} j^{1 / 2-r / p} d t
$$

If $r \leq \frac{p}{2}$ the integral above diverges near $t=1$ for all m.

If $r>\frac{p}{2}$ it always converges near ∞, we have convergence near 0 iff $m>\frac{r}{p}$ and by using Hölder's inequality, converges near $t=1$ if $\frac{(4-p) p}{4}<r<p$, for any m. Note that $\frac{p}{2}<\frac{(4-p) p}{4}$ and so, $r>\frac{p}{2}$.

Observación Some remarks about the number $\frac{(4-p) p}{4}$ will be useful in the sequel:

- $\frac{(4-p) p}{4}<1$ since $p<2$.
- It is easy to see that $\frac{p}{2}<\frac{(4-p) p}{4}<p$ and so, $\frac{(4-p) p}{4}<r<p$ implies $1<\frac{p}{r}<2$.
- The sequence $\left(p_{n}\right)_{n \geq 1}$ given by the relation $p_{n+1}=\frac{\left(4-p_{n}\right) p_{n}}{4}, 0<p_{1}<2$ is strictly monotone and decresing and $\lim _{n \rightarrow \infty} p_{n}=0$.

Approximation lemmas.

Definition. Let $\delta>0$. A subset T of the unit sphere S_{X} of X is a δ-net if for every $x \in S_{X}$ there is an element $t \in T$ such that $\|x-t\|^{r} \leq \delta$.

Lemma 0.4. Let X be of dimension n and $\delta>0 . S_{X}$ contains a δ-net of cardinality at most $\exp \frac{2 n}{r \delta}$.

The following approximation lemma is an easy consequence of the one used in [2] and [5].

Lemma 0.5. Let X be r-Banach and Y s-Banach. Let $0<\varepsilon<1$ and $\delta=\frac{\varepsilon}{5}$. If a linear operator $T: X \rightarrow Y$ verifies

$$
1-\delta \leq\|T x\|^{r} \leq 1+\delta
$$

for every x in a $\delta^{s / r}$-net of S_{X} then,

$$
1-\varepsilon \leq\|T x\|^{r} \leq 1+\varepsilon
$$

for every $x \in S_{X}$.

We will always work with the function $\|\cdot\|^{r}$. In order to remove the exponent r at the end of the proofs we need the following easy lemma which is nothing but the Mean Value Theorem applied to the function $t^{1 / r}$.

Lemma 0.6. Let $0<r, \varepsilon<1, t>0$ and $\delta=\frac{2 \varepsilon r}{2^{1 / r}}$. Then, $1-\delta \leq t^{r} \leq 1+\delta \Longrightarrow$ $1-\varepsilon \leq t \leq 1+\varepsilon$.

Deviation inequalities.

As in most of the theorems quoted in the introduction, the proof of our main results will rest on the so-called deviation inequalities.

Lemma 0.7. (Deviation inequality). Let $1 \leq q<2$. Let $\left(\xi_{j}\right)$ be a sequence of independent random variables with values in X such that essup $\left\|\xi_{j}\right\|=\lambda_{j}<\infty$. If $\left\|\left(\lambda_{j}^{r}\right)\right\|_{q, \infty}<\infty$ and $\sum_{j \geq 1} \xi_{j}$ converges almost surely, (a.s.), to a random variable ξ with $\|\xi\|^{r}$ integrable then, for every $t>0$

$$
\mathbb{P}\left\{\left|\|\xi\|^{r}-\mathbb{E}\|\xi\|^{r}\right|>t\right\} \leq 2 \exp -c_{q}\left(\frac{t}{\left\|\left(\lambda_{j}^{r}\right)\right\|_{q, \infty}}\right)^{q^{\prime}} \quad \text { if } \quad 1<q<2
$$

and

$$
\mathbb{P}\left\{\left|\|\xi\|^{r}-\mathbb{E}\|\xi\|^{r}\right|>t\right\} \leq K \exp -\exp \left(\frac{c t}{\left\|\left(\lambda_{j}^{r}\right)\right\|_{1, \infty}}\right) \quad \text { if } \quad q=1
$$

where c, K are positive numerical constants, c_{q} is a constant depending uniquely on q and q^{\prime} is such that $q^{-1}+q^{\prime-1}=1$.

Demostración:

Denote by \mathcal{F}_{j} the σ-algebra generated by $\left\{\xi_{1}, \ldots, \xi_{j}\right\}$. Write $d_{j}=\mathbb{E}\left(\|\xi\|^{r} \mid \mathcal{F}_{j}\right)-$ $\mathbb{E}\left(\|\xi\|^{r} \mid \mathcal{F}_{j-1}\right)$. It is easy to see that $\sum_{j=1}^{\infty} d_{j}=\|\xi\|^{r}-\mathbb{E}\|\xi\|^{r}$, a.s.. Also it is not difficult to prove the analogue of Yurinski's inequality [16] for r-Banach spaces, namely for
every $j \geq 1,\left|d_{j}\right| \leq\left\|\xi_{j}\right\|^{r}+\mathbb{E}\left\|\xi_{j}\right\|^{r}$. Therefore we have essup $\left|d_{j}\right| \leq 2 \lambda_{j}^{r}$. Conclude by using two well known exponential inequalities for real valued martingales:

For every $\left(d_{j}\right)$ scalar martingale difference sequence such that $\left\|d_{j}\right\|_{\infty}=\mu_{j}<\infty$ and $\left\|\left(\mu_{j}\right)\right\|_{q, \infty}<\infty$ if $1 \leq q<2$ we have $\forall t>0$,

$$
\mathbb{P}\left\{\left|\sum_{j=1}^{\infty} d_{j}\right|>t\right\} \leq 2 \exp -c_{q}\left(\frac{t}{\left\|\left(\mu_{j}\right)\right\|_{q, \infty}}\right)^{q^{\prime}} \quad \text { if } \quad 1<q<2
$$

and

$$
\mathbb{P}\left\{\left|\sum_{j=1}^{\infty} d_{j}\right|>t\right\} \leq K \exp -\left(\exp \frac{c t}{\left\|\left(\mu_{j}\right)\right\|_{1, \infty}}\right) \quad \text { if } \quad q=1
$$

We refer to [5] for more information on the former and to [13] for the latter.

Observación By Yurinski's inequality and the property of orthogonality of martingale differences it is not difficult to check that $\mathbb{E}\left|\|\xi\|^{r}-\mathbb{E}\|\xi\|^{r}\right|^{2}=\mathbb{E}\left|\sum_{j=1}^{\infty} d_{j}\right|^{2} \leq$ $4 \sum_{j=1}^{\infty} \lambda_{j}^{2 r}$.

1. The case $r<p$.

Now we are in position to state the main result of the section,

Theorem 1.1. Let $r, p \in \mathbf{R}$ such that $0<\frac{(4-p) p}{4}<r<p<2$. There exists a constant $C(r, p)>0$ such that for every $0<\varepsilon<1$ and every r-Banach space X, $\ell_{p}^{k} \stackrel{1+\varepsilon}{\hookrightarrow} X$ as long as

$$
k<C(r, p) \varepsilon^{\frac{p^{2}}{r(p-r)}}\left(S T_{p}(X)\right)^{\frac{1}{\frac{1}{r}-\frac{1}{p}}}
$$

Demostración: Fix $0<\varepsilon<1$. By Proposition 0.1. pick x_{1}, \ldots, x_{n} in the unit ball of X such that

$$
\left(\mathbb{E}\left\|\sum_{i=1}^{n} \theta_{i} x_{i}\right\|^{r}\right)^{1 / r} \geq \frac{1}{2}\left(S T_{p}(X)\right) n^{1 / p}
$$

It follows from Theorem 0.2 that $\mathbb{E}\left\|S^{(1)}\right\|^{r} \geq\left(\frac{1}{2 C_{p}}\right)^{r}\left(S T_{p}(X)\right)^{r}$
Let $k \in \mathbf{N}$ to be fixed, and let $\left(a_{i}\right) \in \mathbf{R}^{k}$ such that $\sum_{i=1}^{k}\left|a_{i}\right|^{p}=1$.
Denote $\xi_{i j}=a_{i} Y_{i j} j^{-1 / p}$. For such a sequence of random variables Lemma 0.7. particularizes as follows:

$$
\mathbb{P}\left\{\left|\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(1)}\right\|^{r}-\mathbb{E}\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(1)}\right\|^{r}\right|>t\right\} \leq 2 \exp -c_{q} t^{q^{\prime}}
$$

with $q=\frac{p}{r}, 1<q<2$ (the proof of this fact reduces to the same computations as in the Banach space setting; see [12] for the details). Also Lemma 0.3. applied to the same sequence yields to the inequality

$$
\left|\mathbb{E}\left\|\sum_{i=1}^{k} a_{i} S_{i}^{(1)}\right\|^{r}-\mathbb{E}\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(1)}\right\|^{r}\right| \leq K_{r, p} k^{1-r / p}
$$

Let $\delta=\frac{2 \varepsilon r}{5 \cdot 2^{1 / r}}$ and $\delta^{\prime}=\frac{\delta}{1+\left(2 C_{p}\right)^{r}}$. Then,

$$
\mathbb{P}\left\{\left|\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(1)}\right\|^{r}-\mathbb{E}\left\|\sum_{i=1}^{k} a_{i} S_{i}^{(1)}\right\|^{r}\right|>\delta \mathbb{E}\left\|S^{(1)}\right\|^{r}\right\}
$$

$$
\leq \mathbb{P}\left\{\left|\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(1)}\right\|^{r}-\mathbb{E}\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(1)}\right\|^{r}\right|+\right.
$$

$$
\left.+\left|\mathbb{E}\left\|S^{(1)}\right\|^{r}-\mathbb{E}\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(1)}\right\|^{r}\right|>\delta^{\prime} \mathbb{E}\left\|S^{(1)}\right\|^{r}+\delta^{\prime}\left(2 C_{p}\right)^{r} \mathbb{E}\left\|S^{(1)}\right\|^{r}\right\}
$$

$$
\leq \mathbb{P}\left\{\left|\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(1)}\right\|^{r}-\mathbb{E}\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(1)}\right\|^{r}\right|+\right.
$$

$$
\left.+\left|\mathbb{E}\left\|S^{(1)}\right\|^{r}-\mathbb{E}\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(1)}\right\|^{r}\right|>\delta^{\prime} \mathbb{E}\left\|S^{(1)}\right\|^{r}+\delta^{\prime} S T_{p}(X)^{r}\right\}
$$

Now if we choose k such that $K_{r, p} k^{1-r / p} \leq \delta^{\prime} S T_{p}(X)^{r}$ we have by Lemma 0.3.,

$$
\begin{gathered}
\mathbb{P}\left\{\left|\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(1)}\right\|^{r}-\mathbb{E}\left\|\sum_{i=1}^{k} a_{i} S_{i}^{(1)}\right\|^{r}\right|>\delta \mathbb{E}\left\|S^{(1)}\right\|^{r}\right\} \leq \\
\leq \mathbb{P}\left\{\left|\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(1)}\right\|^{r}-\mathbb{E}\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(1)}\right\|^{r}\right|>\delta^{\prime} \mathbb{E}\left\|S^{(1)}\right\|^{r}\right\} \leq 2 \exp -C_{p, r} \delta^{\prime q^{\prime}}\left(\mathbb{E}\left\|S^{(1)}\right\|^{r}\right)^{q^{\prime}} \leq \\
\leq 2 \exp -C_{p, r}{\delta^{\prime q^{\prime}}\left(S T_{p}(X)\right)^{\frac{1}{r}-\frac{1}{p}}}^{\leq}
\end{gathered}
$$

It is straightforward to check that the restriction on k is the same as $k \leq C(\varepsilon, r, p)\left(S T_{p}(X)\right)^{\frac{1}{\frac{1}{r}-\frac{1}{p}}}$. The rest of the proof is standard. We have already estimated the probability

$$
\mathbb{P}\left\{\left|\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(1)}\right\|^{r}-\mathbb{E}\left\|S^{(1)}\right\|^{r}\right|>\delta \mathbb{E}\left\|S^{(1)}\right\|^{r}\right\} \leq 2 \exp -C_{p, r} \delta^{\prime q^{\prime}}\left(S T_{p}(X)\right)^{\frac{1}{\frac{1}{r}-\frac{1}{p}}}
$$

Let $\delta_{1}=\delta^{\min (1, p) / r}$. Let $N_{\delta_{1}}$ be the cardinality of a δ_{1}-net $T_{\delta_{1}}$ in the unit ball of ℓ_{p}^{n}. It follows that

$$
\begin{aligned}
\mathbb{P}\left\{\left|\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(1)}\right\|^{r}-\mathbb{E}\left\|S^{(1)}\right\|^{r}\right|\right. & \left.\leq \delta \mathbb{E}\left\|S^{(1)}\right\|^{r} \mid \forall\left(a_{i}\right) \in T_{\delta_{1}}\right\} \\
& \geq 1-N_{\delta_{1}} 2 \exp -C_{p, r} \delta^{\prime q^{\prime}}\left(S T_{p}(X)\right)^{\frac{1}{r}-\frac{1}{p}}
\end{aligned}
$$

If we oblige the second part of the inequality to be strictly positive then there will exist an element $\omega=\omega(\varepsilon)$ in the probability space such that $\left|\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(1)}(\omega)\right\|^{r}-\mathbb{E}\left\|S^{(1)}\right\|^{r}\right| \leq$ $\delta \mathbb{E}\left\|S^{(1)}\right\|^{r}$ holds for every $\left(a_{i}\right) \in T_{\delta_{1}}$. This is achieved, in view of Lemma 0.4., if

$$
2 \exp \frac{2 k}{\min (1, p) \delta_{1}} \exp -C_{p, r} \delta^{q^{\prime}}\left(S T_{p}(X)\right)^{\frac{1}{\frac{1}{r}-\frac{1}{p}}}<1
$$

 use Lemma 0.6. to remove the exponent r and get $1-\varepsilon \leq\left\|\sum_{i=1}^{k} a_{i} \frac{\tilde{S}_{i}^{(1)}}{\|E\| S^{(1)} \|}\right\| \leq 1+\varepsilon$. ///

As announced we deduce the main result in [5]:

Corollary 1.2. If $X=\ell_{r}^{n}(0<r<1)$, and $r<p<2$ then for every $0<\varepsilon<1$ there is a constant $C=C(\varepsilon, r, p)$ such that $\ell_{p}^{k} \stackrel{1+\varepsilon}{\hookrightarrow} \ell_{r}^{n}$ for every $k \leq C n$.

Demostración: Recall that $S T_{p}\left(\ell_{r}^{n}\right)=C_{p, r} n^{1 / r-1 / p}$ for $0<r<p<2$ and $\frac{(4-p) p}{4}<1$. Theorem 1.1 tells us that $\ell_{p}^{k} \stackrel{1+\varepsilon}{\hookrightarrow} \ell_{s}^{n}$ whenever $\frac{(4-p) p}{4}<s<p, s<1$ for every $k \leq C n$. By iteration we get the result.

2. The case $r=p$.

The difference from the previous case is that the moment of order r of $\left\|S^{(1)}\right\|$ does not exist and that is the reason why we will have to truncate it and consider $S^{(m)}$ and $\tilde{S}^{(m)}, m \geq 2$. As before it will be important to compare the moments of certain variables.

Lemma 2.1.. Let $\delta>0,0<r<1$. There exists functions $m=m(\delta, r), C(\delta, r)$ and $\varphi(\delta, r)$ with $\varphi(\delta, r) \rightarrow 0$ as $\delta \rightarrow 0$ for fixed r, such that for every $k \in \mathbf{N}$ such that

$$
\log k \leq C(\delta, r)\left(S T_{r}(X)\right)^{r}
$$

and every $\left(a_{i}\right) \in \mathbf{R}^{k}$ such that $\sum_{i=1}^{k}\left|a_{i}\right|^{r}=1$, we have

$$
\left|\mathbb{E}\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(m)}\right\|^{r}-M^{r}\right|<M^{r} \varphi(\delta, r)
$$

where $M=\left(\mathbb{E}\left\|\sum_{i=1}^{k} a_{i} S_{i}^{(1)}\right\|^{r / 2}\right)^{2 / r}=\left(\mathbb{E}\left\|S^{(1)}\right\|^{r / 2}\right)^{2 / r}$.

Denote $\Phi_{m}=\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(m)}\right\|$ and $\Psi_{m}=\left\|\sum_{i=1}^{k} a_{i} S_{i}^{(m)}\right\|$.
We will prove 2.1. later; now we will state the main theorem of the section:

Theorem 2.2. Let $0<r<1$. For every $0<\varepsilon<1$ there exists a constant $C(\varepsilon, r)>0$ such that for every r-Banach space $X, \ell_{r}^{k} \xrightarrow{1+\varepsilon} X$ as long as

$$
\log k<C(\varepsilon, r)\left(S T_{r}(X)\right)^{r}
$$

Demostración: Fix $0<\varepsilon<1$. Let $\delta=\frac{2 \varepsilon r}{5.2^{1 / r}}$ and $m=m(\delta, r) \geq 2$ given by Lemma 1.2. Let $k \in \mathbf{N}$ and $\left(a_{i}\right) \in \mathbf{R}^{k}$ with $\sum_{i=1}^{k}\left|a_{i}\right|^{r}=1$. Choose vectors $x_{1} \ldots x_{n} \in B_{X}$ such that

$$
\frac{1}{n^{1 / r}}\left(\mathbb{E}\left\|\sum_{i=1}^{n} \theta_{i} x_{i}\right\|^{r / 2}\right)^{2 / r} \geq \frac{1}{2} S T_{r}(X)
$$

By 0.2., $M=\left(\mathbb{E}\left\|\sum_{i=1}^{k} a_{i} S_{i}^{(1)}\right\|^{r / 2}\right)^{2 / r}=\frac{1}{n^{1 / r} C_{r}}\left(\mathbb{E}\left\|\sum_{i=1}^{k} \theta_{i} x_{i}\right\|^{r / 2}\right)^{2 / r} \geq$ $\frac{1}{2 C_{r}} S T_{r}(X)$.

By Lemma 0.7. and proceeding as in the case $r<p$ we have for every $m \geq 2$,

$$
\mathbb{P}\left\{\left|\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(m)}\right\|^{r}-\mathbb{E}\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(m)}\right\|^{r}\right|>t\right\} \leq K \exp -(\exp c t)
$$

With the notation of Lemma 2.1. define $\delta^{\prime}=\delta^{\prime}(\varepsilon, r)$ such that $\delta \geq \varphi\left(\delta^{\prime}, r\right)+\delta^{\prime}$. By using triangle inequality (and again Lemma 2.1.) it is easy to show that

$$
\mathbb{P}\left\{\left|\left\|\sum_{i=1}^{k} a_{i} \tilde{S}_{i}^{(m)}\right\|^{r}-M^{r}\right|>\delta M^{r}\right\} \leq K \exp -\left(\exp c \delta^{\prime} M^{r}\right)
$$

and the result now follows by using again standard density arguments.

Proof of Lemma 2.1. We have to prove $\left|\mathbb{E}\left(\Phi_{m}^{r}\right)-M^{r}\right| \leq M^{r} \varphi(\delta, r)$.
Paso 1. Given $\delta>0$ by Lemma 0.2. we can pick $m=m(\delta, r)$ such that $\mid \mathbb{E}\left(\Phi_{m}^{r}\right)-$ $\mathbb{E}\left(\Psi_{m}^{r}\right) \mid<\delta$.

Paso 2. By \mathbb{E}_{Y} we mean that we are fixing $\Gamma_{i j}$ and integrating with respect to $Y_{i j}$ and analagously \mathbb{E}_{Γ}. With this notation $\mathbb{E}_{\Gamma} \mathbb{E}_{Y}=\mathbb{E}_{Y} \mathbb{E}_{\Gamma}=\mathbb{E}$. Then

$$
\begin{aligned}
\left|\mathbb{E}\left(\Psi_{m}^{r / 2}\right)-\left(\mathbb{E}\left(\Phi_{m}^{r}\right)\right)^{1 / 2}\right| & \leq \mathbb{E}\left|\Psi_{m}^{r / 2}-\left(\mathbb{E}\left(\Phi_{m}^{r}\right)\right)^{1 / 2}\right| \leq \mathbb{E}\left|\Psi_{m}^{r}-\mathbb{E}\left(\Phi_{m}^{r}\right)\right|^{1 / 2} \\
& \leq \mathbb{E}\left|\Psi_{m}^{r}-\mathbb{E}_{Y}\left(\Psi_{m}^{r}\right)\right|^{1 / 2}+\mathbb{E}\left|\mathbb{E}_{Y}\left(\Psi_{m}^{r}\right)-\mathbb{E}\left(\Phi_{m}^{r}\right)\right|^{1 / 2} \\
& =\mathbb{E}\left|\Psi_{m}^{r}-\mathbb{E}_{Y}\left(\Psi_{m}^{r}\right)\right|^{1 / 2}+\mathbb{E}_{\Gamma}\left|\mathbb{E}_{Y}\left(\Psi_{m}^{r}\right)-\mathbb{E}_{Y}\left(\Phi_{m}^{r}\right)\right|^{1 / 2}
\end{aligned}
$$

We have to estimate the two summands,

Paso 3. $\left(\mathbb{E}_{\Gamma}\left|\mathbb{E}_{Y}\left(\Psi_{m}^{r}\right)-\mathbb{E}_{Y}\left(\Phi_{m}^{r}\right)\right|^{1 / 2}\right)^{2} \leq \mathbb{E}_{\Gamma}\left|\mathbb{E}_{Y}\left(\Psi_{m}^{r}\right)-\mathbb{E}_{Y}\left(\Phi_{m}^{r}\right)\right| \leq \mathbb{E} \mid \Psi_{m}^{r}-$ $\Phi_{m}^{r} \mid \leq \delta$ (the last inequality is Step 1).

Paso 4. For m big enough,

$$
\begin{aligned}
&\left(\mathbb{E}\left|\Psi_{m}^{r}-\mathbb{E}_{Y}\left(\Psi_{m}^{r}\right)\right|^{1 / 2}\right)^{2} \leq\left(\mathbb{E}\left|\Psi_{m}^{r}-\mathbb{E}_{Y}\left(\Psi_{m}^{r}\right)\right|^{2}\right)^{1 / 2} \\
&=\left(\mathbb{E}_{\Gamma} \mathbb{E}_{Y}\left|\Psi_{m}^{r}-\mathbb{E}_{Y}\left(\Psi_{m}^{r}\right)\right|^{2}\right)^{1 / 2} \leq 2\left(\sum_{j \geq m} \mathbb{E}_{\Gamma} \Gamma_{j}^{-2}\right)^{1 / 2} \leq \delta
\end{aligned}
$$

For the second inequality we first use the remark after 0.7 . to obtain

$$
\mathbb{E}_{Y}\left|\Psi_{m}^{r}-\mathbb{E}_{Y}\left(\Psi_{m}^{r}\right)\right|^{2} \leq 4 \sum_{i, j}\left|a_{i}\right|^{2 r} \Gamma_{i j}^{-2}
$$

then take espectation respect to $\Gamma_{i j}$. Finally, the third inequality follows from the known fact that $\mathbb{E}\left(\Gamma_{j}^{-2}\right) \sim j^{-2}$ (see [9]).

Paso 5. Let m be the maximun of the values needed in steps 1 and 4 . Let $Z_{i}=$ $\sum_{j \leq m} \Gamma_{i j}^{-1}$. We want to find estimates of $\left\|\sum_{i=1}^{k}\left|a_{i}\right|^{r} Z_{i}\right\|_{1 / 2}$ which will be applied next. In order to do so we need three lemmas. The first one is a straightforward computation; the second one can be found in [12] and the third one is sufficiently known.

Lemma 2.3. $\mathbb{P}\left\{\sum_{j \leq m} \Gamma_{i j}^{-1}>t\right\} \leq \frac{m^{2}}{t}$
Lemma 2.4. ([12]). Let $\left(Z_{i}\right)$ be a sequence of independent positive random variables. Let the function $\omega \rightarrow\left\|Z_{i}(\omega)\right\|_{q, \infty}$. For every $0<q<\infty$

$$
\left\|\left\|Z_{i}(\omega)\right\|_{q, \infty}\right\|_{q, \infty}^{q} \leq 2 e \sup _{t>0} t^{q} \sum_{i} \mathbb{P}\left(Z_{i}>t\right)
$$

Lemma 2.5. Let $0<q$,
(i) For every $\left(a_{i}\right) \in \mathbf{R}^{n}, n>1,\left\|\left(a_{i}\right)\right\|_{q, \infty} \leq\left\|\left(a_{i}\right)\right\|_{q} \leq c_{q}(\log n)^{1 / q}\left\|\left(a_{i}\right)\right\|_{q, \infty}$
(ii) For any $0<s<q$ there is a positive constant $C_{q, s}$ such that for any measurable function f defined on a probability space, $C_{q, s}\|f\|_{s} \leq\|f\|_{q, \infty} \leq\|f\|_{q}$.

Hence,

$$
\begin{aligned}
& \left\|\sum_{i=1}^{k}\left|a_{i}\right|^{r} Z_{i}\right\|_{1 / 2} \leq C\left\|\sum_{i=1}^{k}\left|a_{i}\right|^{r} Z_{i}\right\|_{1, \infty} \leq C\| \|\left|a_{i}\right|^{r} Z_{i}(\omega)\left\|_{1, \infty}\right\|_{1, \infty} \log k \\
& \leq C \log k \sup _{t>0} t \sum_{i=1}^{k} \mathbb{P}\left\{\left|a_{i}\right|^{r} Z_{i}>t\right\} \leq C \log k \sup _{t>0} t \sum_{i=1}^{k} \frac{m^{2}}{t}\left|a_{i}\right|^{r}=B(\delta, r) \log k \sum_{i=1}^{k}\left|a_{i}\right|^{r}
\end{aligned}
$$

for some function B of δ and r.

Paso 6.

$$
\begin{aligned}
\mid \mathbb{E} \Psi_{m}^{r / 2} & -\left.M^{r / 2}\right|^{2}=\left|\mathbb{E} \Psi_{m}^{r / 2}-\mathbb{E}\left\|\sum_{i=1}^{k} a_{i} S_{i}^{(1)}\right\|^{r / 2}\right|^{2} \leq\left(\mathbb{E}\left|\Psi_{m}^{r / 2}-\left\|\sum_{i=1}^{k} a_{i} S_{i}^{(1)}\right\|^{r / 2}\right|\right)^{2} \\
& \leq\left(\mathbb{E}\left|\Psi_{m}^{r}-\left\|\sum_{i=1}^{k} a_{i} S_{i}^{(1)}\right\|^{r}\right|^{1 / 2}\right)^{2} \leq\left(\mathbb{E}\left\|\sum_{i=1}^{k} a_{i}\left(\tilde{S}_{i}^{(m)}-S_{i}^{(1)}\right)\right\|^{r / 2}\right)^{2} \\
& \leq\left(\left.\left.\mathbb{E}\left|\sum_{i=1}^{k}\right| a_{i}\right|^{r}\left\|\sum_{j \leq m} \Gamma_{i j}^{-1 / r} Y_{i j}\right\|^{r}\right|^{1 / 2}\right)^{2} \leq\left(\left.\left.\mathbb{E}\left|\sum_{i=1}^{k}\right| a_{i}\right|^{r} \sum_{j \leq m} \Gamma_{i j}^{-1}\right|^{1 / 2}\right)^{2} \\
& \leq(\text { by Step } 5) \leq B(\delta, r) \log k
\end{aligned}
$$

That is, for a certain function $C^{\prime}(\delta, r)$ we have proved that $\left|\mathbb{E}\left(\Psi_{m}^{r / 2}\right)-M^{r / 2}\right| \leq$ $(B(\delta, r) \log k)^{1 / 2} \leq C^{\prime}(\delta, r) M^{r / 2}$.

Final. Joining steps 2 and 6,
$\left|\left(\mathbb{E} \Phi_{m}^{r}\right)^{1 / 2}-M^{r / 2}\right| \leq\left|\left(\mathbb{E} \Phi_{m}^{r}\right)^{1 / 2}-\mathbb{E}\left(\Psi_{m}^{r / 2}\right)\right|+\left|\mathbb{E}\left(\Psi_{m}^{r / 2}\right)-M^{r / 2}\right| \leq \varphi^{\prime}(\delta, r) M^{r / 2}$
and by using the Mean Value Theorem to remove the exponent $\frac{1}{2}$ we get the desired result with $\varphi=2 \varphi^{\prime}\left(1+\varphi^{\prime}\right)$.

3. The Maurey-Pisier theorem for the type for r-Banach spaces.

Notation.

$$
\begin{aligned}
& p(X)=\inf \left\{p \mid \ell_{p}^{n} \stackrel{1+\varepsilon}{\hookrightarrow} X, \forall n \in \mathbf{N}, \forall 0<\varepsilon<1\right\} \\
& \tilde{p}(X)=\sup \{p \mid X \text { is of stable type } p\}
\end{aligned}
$$

In order to prove the result we need to recall some relations between stable type and Rademacher type (type for short).

Lemma 3.2. ([4,14]). For any r-Banach space X,
(i) If X is of type p then is of stable type q for every $q<p$.
(ii) If X is of stable type p then is of type p.

Theorem 3.3. ([7]).
(i) If X is an r-Banach space of type p for $1<p \leq 2$ then X is a Banach space. (i.e. there is an equivalent norm in X such that X turns to be Banach).
(ii) If X is an r-Banach space of type p for $0<r<p<1$ then X a p-Banach space. (i.e. there is an equivalent p-norm in X such that X turns to be p-Banach).
(iii) If X is an r-Banach space of type 1 for then X a p-Banach space for every $p<1$. (i.e. there is an equivalent p-norm in X such that X turns to be p-Banach).

Theorem 3.1. Let X be an infinite dimensional r-Banach space. Then
i) $p(X)=\tilde{p}(X)$.
ii) $\ell_{p(X)}^{n} \stackrel{1+\varepsilon}{\hookrightarrow} X \forall n \in \mathbf{N}, \forall 0<\varepsilon<1$.

Demostración: i) Standard arguments taken from the Banach space context show that $r \leq \tilde{p}(X) \leq p(X) \leq 2$. The non-trivial part is to see $\tilde{p}(X)=p(X)$. Suppose $\tilde{p}(X)<p(X)$. By definition, X is of stable type q for every $q<\tilde{p}(X)$ and so is of type q-Rademacher and can be renormed to be a q-Banach space. Now choose q_{1} such that $\tilde{p}(X)<q_{1}<p(X)$ and $\frac{\left(4-q_{1}\right) q_{1}}{4}<q<q_{1}$. Since $S T_{q_{1}}(X)=\infty$, Theorem 1.1. tells us that $\ell_{q_{1}}^{n} \xrightarrow{1+\varepsilon} X$ which means $p(X) \leq q$, contradiction.
ii) also follows by standard arguments.

Observación Again, proceeding as in the Banach space context one can show
i) $[\tilde{p}(X), 2]=\left\{p \mid \ell_{p}^{n} \xrightarrow{1+\varepsilon} X \quad \forall n \in \mathbf{N} \quad \forall 0<\varepsilon<1\right\}$.
ii) $\{p \mid X$ is of stable type $p\}$ is an open interval.
4. Embedding subsets of L_{p} into $\ell_{r}^{n}, 0<r \leq p<2, r \leq 1$.

Given $(X,\|\cdot\|),(Y,\| \| \cdot\| \|)$ two quasi-Banach spaces, $0<\varepsilon<1$ and a set $T \subset X$ we say that $T(1+\varepsilon)$-embedds into Y (and we will denote this by the diagram $T \stackrel{1+\varepsilon}{\hookrightarrow} Y)$ if there is a one-to-one map $f: T \rightarrow Y$ such that $1-\varepsilon \leq \frac{\| \| f(x)-f(y)\| \|}{\|x-y\|} \leq$ $1+\varepsilon, \forall x, y \in T$.

Observación Since simple functions are dense in L_{p} an approximation argument shows that for every $0<\varepsilon<1$ and any finite set $T \subset L_{p}$ there is $T^{\prime} \subset \ell_{p}$ and a one-to-one map f from T onto T^{\prime} such that $1-\varepsilon \leq \frac{\|f(x)-f(y)\|_{p}}{\|x-y\|_{p}} \leq 1+\varepsilon$. Moreover if two functions $x, y \in T \subset L_{p}$ have disjoint support so do the corresponding images in T^{\prime}. For notation reasons all the theorems are stated supposing $T \subset \ell_{p}$ but they can be re-written considering T contained in L_{p}.

Notación Let r and p be as above. Given $T \subset \ell_{r}$ denote $D_{(r, p)}=\sup _{t, s \in T} \frac{\|t-s\|_{r}}{\|t-s\|_{p}}$.

Theorem 4.1. For every r, p such that $0<r<p<2,0<r \leq 1$ there are constants $C, C^{\prime}, C^{\prime \prime}>0$ uniquely dependent on r and p such that for every $0<\varepsilon<1$ and any finite set $T \subset \ell_{p}$ of cardinality card $T=N$, the diagram $T \stackrel{1+\varepsilon}{\hookrightarrow} \ell_{r}^{n}$ holds
i) If $0<\frac{p(4-p)}{4}<r<p$, as long as

$$
D_{(r, p)}^{q^{\prime} r}+\log N<C \varepsilon^{q^{\prime}} n
$$

ii) If $r \leq \frac{p(4-p)}{4}$, as long as

$$
D_{(r, p)}^{q^{\prime} r}+\log N<C^{\prime} \varepsilon^{C^{\prime \prime}} n
$$

where $q=\frac{p}{r}$ and q^{\prime} the conjugate exponent of q.

Demostración: It is enough to prove the first statement since ii) is consequence of i), Corollary 1.2. and the fact that for every $0<r<s, D_{(s, p)} \leq D_{(r, p)}$. Throughout the proof any constant depending on p and r will be denoted with the same letter C. For every $n \in \mathbf{N}$ let $Y: \Omega \rightarrow \ell_{r}^{n}$ be the random variable with distribution function $\frac{1}{2 n} \sum_{i=1}^{n}\left(\delta_{e_{i}}+\delta_{-e_{i}}\right)$, where e_{i} is the canonical basis of ℓ_{r}^{n}. With the notation introduced above define for every $t=\left(t_{i}\right)_{1}^{\infty} \in T, \Theta_{t}=\sum_{i=1}^{\infty} t_{i} S_{i}^{(1)} \quad$ and $\quad \tilde{\Theta}_{t}=\sum_{i=1}^{\infty} t_{i} \tilde{S}_{i}^{(1)}$. For every $t, s \in T$ consider $\Theta_{t}-\Theta_{s}$ and $\tilde{\Theta}_{t}-\tilde{\Theta}_{s}$. By the fundamental property of p-stable random variables we have $\left\|\Theta_{t}-\Theta_{s}\right\|_{r} \stackrel{d}{=}\|t-s\|_{p}\left\|S^{(1)}\right\|_{r} \quad$ and $\quad \mathbb{E}\left(\left\|\Theta_{t}-\Theta_{s}\right\|_{r}^{r}\right)=$ $\|t-s\|_{p}^{r} C n^{\frac{1}{q^{\prime}}}$. Also Lemma 0.3. yields in this case to $\mid \mathbb{E}\left(\left\|\Theta_{t}-\Theta_{s}\right\|_{r}^{r}\right)-\mathbb{E}\left(\| \tilde{\Theta}_{t}-\right.$ $\left.\tilde{\Theta}_{s} \|_{r}^{r}\right) \mid \leq C\|t-s\|_{r}^{r}$. That is

$$
\frac{1}{\|t-s\|_{p}^{r}}\left|\mathbb{E}\left(\left\|\Theta_{t}-\Theta_{s}\right\|_{r}^{r}\right)-\mathbb{E}\left(\left\|\tilde{\Theta}_{t}-\tilde{\Theta}_{s}\right\|_{r}^{r}\right)\right| \leq C D_{(r, p)}^{r}
$$

Proceeding as in the proof of Theorem 1.1. we have,

$$
\begin{aligned}
& \mathbb{P}\left\{\left|\frac{\left\|\tilde{\Theta}_{t}-\tilde{\Theta}_{s}\right\|_{r}^{r}}{\|t-s\|_{p}^{r}}-\frac{\mathbb{E}\left(\left\|\Theta_{t}-\Theta_{s}\right\|_{r}^{r}\right)}{\|t-s\|_{p}^{r}}\right|>\varepsilon \frac{\mathbb{E}\left(\left\|\Theta_{t}-\Theta_{s}\right\|_{r}^{r}\right)}{\|t-s\|_{p}^{r}}\right\} \\
& \leq \mathbb{P}\left\{\left|\frac{\left\|\tilde{\Theta}_{t}-\tilde{\Theta}_{s}\right\|_{r}^{r}-\mathbb{E}\left(\left\|\tilde{\Theta}_{t}-\tilde{\Theta}_{s}\right\|_{r}^{r}\right)}{\|t-s\|_{p}^{r}}\right|>C\left(\varepsilon n^{1 / q^{\prime}}-D_{r, p}^{r}\right)\right\} \leq 2 \exp -C\left(\varepsilon n^{1 / q^{\prime}}-D_{r, p}^{r}\right)^{q^{\prime}}
\end{aligned}
$$

We have estimated the probability

$$
\mathbb{P}\left\{\left.\left|\frac{\left\|\tilde{\Theta}_{t}-\tilde{\Theta}_{s}\right\|_{r}^{r}}{\|t-s\|_{p}^{r}}-\mathbb{E}\left(\left\|S^{(1)}\right\|_{r}^{r}\right)\right| \leq \varepsilon \mathbb{E}\left(\left\|S^{(1)}\right\|_{r}^{r}\right) \right\rvert\, \forall t, s \in T\right\} \geq 1-\binom{N}{2} 2 \exp -C\left(\varepsilon n^{1 / q^{\prime}}-D_{r, p}^{r}\right)^{q^{\prime}}
$$

If this probability is strictly positive there will be an element ω in the probability space such that,

$$
\mathbb{E}\left(\left\|S^{(1)}\right\|_{r}^{r}\right)(1-\varepsilon) \leq \frac{\left\|\tilde{\Theta}_{t}(\omega)-\tilde{\Theta}_{s}(\omega)\right\|_{r}^{r}}{\|t-s\|_{p}^{r}} \leq(1+\varepsilon) \mathbb{E}\left(\left\|S^{(1)}\right\|_{r}^{r}\right) \quad \forall t, s \in T
$$

Conclude using Lemma 0.6. in order to remove the exponent r.

Observe that the smaller the constant $D_{(r, p)}$ is the better estimate will be obtained. This is the case for instance when we consider subsets T formed by points of mutually disjoint support.

Observación Let $T \subset \ell_{p}$ be a set of points with mutually disjoint support. The map $f: T \rightarrow \ell_{p}$ defined by $f\left(t_{i}\right)=\left\|t_{i}\right\|_{p} e_{i}$ is an isometry. Indeed, for every pair $t_{i}, t_{j} \in T$,

$$
\left\|t_{i}-t_{j}\right\|_{p}^{p}=\sum_{k=1}^{\infty}\left|t_{i}(k)\right|^{p}+\left|t_{j}(k)\right|^{p}=\| \| t_{i}\left\|_{p} e_{i}-\right\| t_{j}\left\|_{p} e_{j}\right\|_{p}^{p}=\left\|f\left(t_{i}\right)-f\left(t_{j}\right)\right\|_{p}^{p}
$$

Observación If $T=\left\{\lambda_{1} e_{1}, \ldots, \lambda_{N} e_{N}\right\}$, then $\sup _{1 \leq i \neq j \leq N} \frac{\left\|\lambda_{i} e_{i}-\lambda_{j} e_{j}\right\|_{r}}{\left\|\lambda_{i} e_{i}-\lambda_{j} e_{j}\right\|_{p}} \leq 2^{\frac{1}{r}-\frac{1}{p}}$.
Corollary 4.2. For every r, p such that $0<r<p<2, r \leq 1$ there are constants $C, C^{\prime}, C^{\prime \prime}>0$ uniquely dependent on r and p such that for every $0<\varepsilon<1$ and any finite set $T \subset \ell_{p}$ of points of mutually disjoint support and cardinality card $T=N$, the diagram $T \stackrel{1+\varepsilon}{\longrightarrow} \ell_{r}^{n}$ holds
i) If $0<\frac{(4-p) p}{4}<r<p$, as long as

$$
n>\frac{C}{\varepsilon^{q^{\prime}}} \log N
$$

ii) If $r \leq \frac{(4-p) p}{4}$, as long as

$$
n>\frac{C^{\prime}}{\varepsilon^{C^{\prime \prime}}} \log N
$$

donde $q=\frac{p}{r}$ y $\frac{1}{q}+\frac{1}{q^{\prime}}=1$.
Demostración: By the remarks above we can assume that T is of the form $T=\left\{\lambda_{1} e_{1}, \ldots \lambda_{N} e_{N}\right\} \subset \ell_{p}^{N}$ and $D_{(r, p)} \leq 2^{1 / q^{\prime}}$. Now use Theorem 4.1.

Observación An standard volumetric argument shows that the relation between n and N in Corollary 4.2. is the best posible.

The same techniques can be used to embedd subsets of ℓ_{p} into ℓ_{p}^{n}.

Proposition 4.3.

i) For every $1<p<2$ there is a constant $C=C(p)>0$ such that for every $0<\varepsilon<1$ and any finite set $T \subset \ell_{p}$ with cardinality card $T=N$, the diagram $T \stackrel{1+\varepsilon}{\hookrightarrow} \ell_{p}^{n}$ holds provided that

$$
D_{(1, p)}^{p}+(\log N)^{\frac{p}{p^{\prime}}}<C \varepsilon^{p} \log n
$$

ii) For every $0<p \leq 1$ and $0<\delta<\frac{p}{4-p}$, there is a constant $C=C(p, \delta)>0$ such that for every $0<\varepsilon<1$ and any finite subset $T \subset \ell_{p}$ of cardinality card $T=N$, the diagram $T \stackrel{1+\varepsilon}{\hookrightarrow} \ell_{p}^{n}$ holds provided that

$$
D_{\left(\frac{p}{1+\delta}, p\right)}^{p}+(\log N)^{\delta}<C \varepsilon^{1+\delta} \log n
$$

The idea of the proof, that we omit, is to consider ℓ_{p} as an r-Banach space for appropiate r and and proceed exactly as in Theorem 4.1. However the estimates are not as satisfactory as before. As a corollary we study the situation in the case of sets of poits of mutually disjoint support.

Corollary 4.4. For every $1<p<2$. There is a constant $C=C(p)>0$ such that, for every $0<\varepsilon<1$ and any finite set $T \subset \ell_{p}$ of points of mutually disjoint support and cardinality card $T=N$, the diagram $T \stackrel{1+\varepsilon}{\hookrightarrow} \ell_{p}^{n}$ holds provided that

$$
\log n>\frac{C}{\varepsilon^{p}}(\log N)^{\frac{p}{p^{\prime}}}
$$

Demostración: Assume that T is of the form $T=\left\{\lambda_{1} e_{1}, \ldots \lambda_{N} e_{N}\right\} \subset \ell_{p}^{N}$; for such $T, D_{1, p} \leq 2^{1 / q^{\prime}}$. Use Proposition 4.3.

Observación Write $f(N)=\exp \left[(\log N)^{\frac{p}{p^{\prime}}}\right]$. It is straightforward to check that $(\log N)^{a} \ll f(N) \ll N^{b}$ for all $a, b>0$ and so the relation given by $f(N)$ is sharper than $N \log N$, (i.e. the one achieved by Schechtman in [15] for any T) although it is worse than the one conjectured by himself in the same paper, a power of $\log N$.

If $0<p \leq 1$, the relation obtained by applying Proposition 4.3. to a set T of points of support mutually disjoint is $\log n>\frac{C}{\varepsilon^{1+\delta}}(\log N)^{\delta}, \forall \delta>0$ and it can be substantially improved (and actually reach a power of logarithm estimate) by using the techniques of Theorem 2.2.

Theorem 4.5. For every $0<p \leq 1$ and $0<\varepsilon<1$, there are constants $C, C^{\prime}>0$ depending on p and ε such that, for any set $T \subset \ell_{p}$ of points with mutually disjoint support and cardinality card $T=N$, the diagram $T \stackrel{1+\varepsilon}{\hookrightarrow} \ell_{p}^{n}$ holds provided that

$$
n>C(\log N)^{C^{\prime}}
$$

Demostración: Suppose $T=\left\{\lambda_{1} e_{1}, \ldots \lambda_{N} e_{N}\right\} \subset \ell_{p}^{N}$. Recall that $S T_{p}\left(\ell_{p}^{n}\right) \sim$ $C_{p}(\log n)^{1 / p}$. There are vectors $x_{1}, \ldots, x_{k} \in B_{\ell_{p}^{n}}$ such that $M=\mathbb{E}\left(\left\|S^{(1)}\right\|_{p}^{p / 2}\right)^{2 / p}=$ $\mathbb{E}\left(\left\|\sum_{i=1}^{k} \theta_{i} x_{i}\right\|_{p}^{p / 2}\right)^{2 / p} k^{-1 / p} C_{p}^{-1} \geq\left(2 C_{p}\right)^{-1}(\log n)^{1 / p}$.

For every $1 \leq i \leq N$ and $m \in \mathbf{N}$ denote $\Theta_{i}^{(m)}=\lambda_{i} \tilde{S}_{i}^{(m)}$. For any $1 \leq i \neq j \leq$ N consider $\Theta_{i}^{(m)}-\Theta_{j}^{(m)}$. The two main ingredients in the proof of Theorem 2.2. (deviation inequality and Lemma 2.1.) particularize respectively as follows:
$\mathbb{P}\left\{\left|\frac{\left\|\Theta_{i}^{(m)}-\Theta_{j}^{(m)}\right\|_{p}^{p}}{\left\|\lambda_{i} e_{i}-\lambda_{j} e_{j}\right\|_{p}^{p}}-\frac{\mathbb{E}\left(\left\|\Theta_{i}^{(m)}-\Theta_{j}^{(m)}\right\|_{p}^{p}\right)}{\left\|\lambda_{i} e_{i}-\lambda_{j} e_{j}\right\|_{p}^{p}}\right|>t\right\} \leq K \exp -(\exp c t) \quad \forall t>0$
and
"Let $\delta>0,0<p \leq 1$.There are functions $m(\delta, p), C(\delta, p)$ and $\varphi(\delta, p)$ with $\varphi(\delta, p) \rightarrow 0$ as $\delta \rightarrow 0$ and fixed p, such that if $\log 2 \leq C(\delta, p) \log n$, then

$$
\left|\frac{\mathbb{E}\left(\left\|\Theta_{i}^{(m)}-\Theta_{j}^{(m)}\right\|_{p}^{p}\right)}{\left\|\lambda_{i} e_{i}-\lambda_{j} e_{j}\right\|_{p}^{p}}-M^{p}\right|<M^{p} \varphi(\delta, p)
$$

Now for every $0<\varepsilon<1$ let $\delta=\delta(\varepsilon)>0$ and $\delta^{\prime}=\delta^{\prime}(\varepsilon, p)$ such that $\delta \geq$ $\varphi\left(\delta^{\prime}, p\right)+\delta^{\prime}$. If $\log 2 \leq C\left(\delta^{\prime}, p\right) \log n$, then for every $1 \leq i \neq j \leq N$ we have

$$
\mathbb{P}\left\{\left|\frac{\left\|\Theta_{i}^{(m)}-\Theta_{j}^{(m)}\right\|_{p}^{p}}{\left\|\lambda_{i} e_{i}-\lambda_{j} e_{j}\right\|_{p}^{p}}-M^{p}\right|>\delta M^{p}\right\} \leq K \exp -\left(\exp C \delta^{\prime} \log n\right)=K \exp -n^{C \delta^{\prime}}
$$

and so

$$
\mathbb{P}\left\{\left.\left|\frac{\left\|\Theta_{i}^{(m)}-\Theta_{j}^{(m)}\right\|_{p}^{p}}{\left\|\lambda_{i} e_{i}-\lambda_{j} e_{j}\right\|_{p}^{p}}-M^{p}\right| \leq \delta M^{p} \right\rvert\, \forall 1 \leq i \neq j \leq N\right\} \geq 1-K\binom{N}{2} \exp -n^{C \delta^{\prime}}
$$

Conclude as in all the results above. Observe that, by choosing appropiately the constant C, the restriction $\log 2 \leq C \log n$ is not such.

References.

1. J. BERNUES, "Inclusiones asintóticas del ℓ_{∞}^{n} cubo y de $\ell_{p}^{n}, 0<p<2$ en espacios de dimensión finita," Ph.D. Thesis, University of Zaragoza, June 1991.
2. S. J. DILWORTH, "The dimension of Euclidean subspaces of quasi-normed spaces," Math. Proc. Cambridge Phil. Soc. 97 (1985), 311-320.
3. Y. GORDON and D. R. LEWIS, "Dvoretzky's theorem on quasi-normed spaces," To appear in Ill. Jour. of Math..
4. J. HOFFMAN-JORGENSEN, "Sums of independent Banach random variables," Studia Math. 52 (1974), 159-185.
5. W. B. JOHNSON and G. SCHECHTMAN, "Embedding ℓ_{p}^{m} into ℓ_{1}^{n}," Acta Math. 49 (1982), 71-85.
6. N. J. KALTON, "The convexity type of quasi-Banach spaces," Unpublished.
7. N. J. KALTON, "Convexity, type and the three space problem," Studia Math. 69 (1980-81), 247-287.
8. M. LEDOUX and M. TALAGRAND, "Probability in Banach Spaces," SpringerVerlag, 1991.
9. M. MARCUS and G. PISIER, "Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes," Acta Math. 152 (1984), 245-301.
10. B. MAUREY and G. PISIER, "Séries de variables aléatoires vectorielles indépendantes et géométrie des espaces de Banach," Studia Math. 58 (1976), 45-90.
11. V.D. MILMAN and G. SCHECHTMAN, "Asymtotic theory of finite dimensional normed spaces," Lecture Notes in Math. 1200. Springer-Verlag, 1986.
12. G. PISIER, "Probabilistic Methods in the Geometry of Banach Spaces," Lecture Notes in Math. 1206, 167-242. Springer-Verlag 1986.
13. G. PISIER, "On the dimension of the ℓ_{p}^{n} subspaces of Banach spaces, for $1 \leq$ $p<2, "$ Trans. Amer.Math.Soc. 276 (1983), 201-211.
14. G. PISIER, "Type des espaces normes," Seminaire Maurey-Schwartz 1973-74. Exposé III.
15. G. SCHECHTMAN, "More on embedding subspaces of L_{p} in ℓ_{r}," Compositio Math. 61 (1987), 159-169.
16. V. YURINSKI, "Exponential bounds for large deviations," Theor. Probab. Appl. 19 (1974), 154-155.
