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Abstract. The main idea of these notes is to present the Kannan-Lovász-
Simonovits spectral gap conjecture on the correct estimate for the spectral gap

of the Laplace-Beltrami operator associated to any log-concave probability on
Rn

1. Introduction and notation

These notes are the content of the three lectures explained by the second author
in the “VI International Course of Mathematical Analysis in Andalućıa”, held in
Antequera in September, 2014. The authors want to express their gratitude to the
organizers of this meeting for giving to one of them the possibility of presenting
this quite new theory to young researchers. The content of this course is included
in the reference [AB2], where a more detailed and complete information appears.

The main idea of these notes is to present the Kannan-Lovász-Simonovits spec-
tral gap conjecture (KLS). This question was originally posed in relation with some
problems in theoretical computer science, but it has a well understood analytic-
geometrical meaning: give the correct estimate for the spectral gap (first non trivial
eigenvalue) of the Laplace-Beltrami operator associated to any log-concave prob-
ability in Rn. The KLS conjecture can also be expressed in terms of a type of
Cheeger’s isoperimetric inequality and, in this way, is related to Poincare’s inequal-
ities and to the concentration of measure phenomenon. In the meanwhile this con-
jecture is now one of the central points in geometrical asymptotic analysis which
is the new branch of functional analysis comming from the geometry of Banach
spaces when it interplays with classical convex geometry and probability.

The notes are divided in three parts. In the first chapter we will present Prékopa-
Leindler inequality as a certain reverse of classical Hölder’s inequality. We will also
deduce from it Brunn-Minkowski, isoperimetric inequality and Borell’s inequality
on concentration of mass for log-concave probabilities on Rn. The second chapter is
dedicated to Cheegers-type isoperimetric inequalities, its relation to Poincaré-type
inequalities and E. Milman’s recent result on the role of convexity in this framework.
In the third chapter we will present the KLS conjecture and the main results in
this subject, up to now. We will also relate KLS to other conjectures and present
our own results on these topics. In the references appears a list of the papers used
for the preparation of this work.

This work has been done with the financial support of MTM2013-42105-P, DGA
E-64 and P1-1B2014-35 projects and of Institut Universitari de Matemàtiques i
Aplicacions de Castelló.

Let us introduce some notation. A convex body K in Rn is a convex, compact
subset of Rn having the origin in its interior. Given an n-dimensional convex body
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K, we will denote by |K|n (or simply |K|) its volume. (|K̃|n = 1). The volume
of the n-dimensional Euclidean ball will be denoted by ωn. We also use | · | for
the modulus of a real number or the Euclidean norm for a vector in Rn. When we
write a ∼ b, for a, b > 0, it means that the quotient of a and b is bounded from
above and from below by absolute constants. O(n) and SO(n) will always denote
the orthogonal and the symmetric orthogonal group on Rn. The Haar probability
on them will be denoted by σ. We will also denote by σn−1 or just σ the Haar
probability measure on Sn−1.

2. Convex inequalities

In this section we focus on Prékopa-Leindler inequality, presenting it as a kind of
reverse of classical Hölder’s inequality. Next we present Brunn-Minkowski inequal-
ity, which really is the version of Prékopa-Leindler’s for charateristic functions. As
a consequence we prove the classical isoperimetric inequality in Rn and Borell’s
inequality which is the main tool for working with log-concave probabilities.

2.1. Hölder’s and reverse Hölder’s inequalities. It is well known that given
two measurable functions f, g : Rn → R+ and 0 ≤ λ ≤ 1, Hölder’s inequality says
that ∫

Rn
f(x)1−λg(x)λdx ≤

(∫
Rn
f(x)dx

)1−λ(∫
Rn
g(x)dx

)λ
.

In the case that we take characteristic functions f = χA, g = χB , (A,B ⊆ Rn),
we have

|A ∩B|n ≤ |A|1−λn |B|λn ∀ 0 ≤ λ ≤ 1

or, equivalently,

|A ∩B|n ≤ min{|A|n, |B|n}.
It is also well known that we cannot reverse in general these two inequalities

even by adding some constant, i.e., in general it is not true for any constant greater
than one that

min{|A|n, |B|n} � C|A ∩B|n
or (∫

Rn
f

)1−λ(∫
Rn
g

)λ
� C

∫
Rn
f1−λgλ

However, we can reverse the inequality if we conider some other expression in-
stead of ∫

Rn
f1−λgλ.

For that we use the sup-convolution of these two functions, which is defined in
the following way. Given f, g : Rn → R+ and 0 ≤ λ ≤ 1 we define

f1−λ ∗sup g
λ(z) := sup

z=(1−λ)x+λy

f(x)1−λgλ(y)

(in this definition we consider all possible couples (x, y) such that z is convex
combination of x, y for λ,

z yx
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in particular, we have f1−λ(z)gλ(z) ≤ f1−λ ∗sup g
λ(z)).

This function is not necessarily measurable, but we can consider its exterior
Lebesgue integral defined by:∫ ∗

Rn
f1−λ ∗sup g

λ(z)dz = inf

{∫
Rn
h(z)dz : f1−λ ∗sup g

λ(z) ≤ h(z)

}
and we have the following result:

Theorem 2.1. (Prékopa-Leindler’s inequality)
Let f, g, h : Rn → R+ three measurable functions such that, for some 0 ≤ λ ≤ 1,

f(x)1−λg(y)λ ≤ h((1− λ)x+ λy) ∀x, y ∈ Rn

Then (∫
Rn
f(x)dx

)1−λ(∫
Rn
g(y)dy

)λ
≤
∫
Rn
h(z)dz.

Moreover, we have the reverse Hölder’s inequality(∫
Rn
f(x)dx

)1−λ(∫
Rn
g(y)dy

)λ
≤
∫ ∗
Rn
f1−λ ∗sup gλ(z)dz.

Proof. Dimension n = 1.
Let A,B ⊆ R be non-empty compact sets. Then we have

|A+B|1 ≥ |A|1 + |B|1
(this inequality is the one-dimensional case of Brunn-Minkowski inequality, which
we will present later). Indeed,

A+B ⊇ (minA+B) ∪ (A+ maxB)

and

(minA+B) ∩ (A+ maxB) = minA+ maxB,

what implies

|A+B|1 ≥ |minA+B|1 + |A+ maxB|1 = |A|1 + |B|1.

For the rest of Borel sets we can use an approximation argument.
Given two bounded Borel measurable functions f, g we can assume without loss

of generality that ‖f‖∞ = ‖g‖∞ = 1.
For any 0 ≤ t < 1, since

{x ∈ R : h(x) ≥ t} ⊇ (1− λ){x ∈ R : f(x) ≥ t}+ λ{x ∈ R : g(x) ≥ t},

we have that∫
R
h(x)dx ≥

∫ 1

0

|{h ≥ t}|dt ≥ (1− λ)

∫ 1

0

|{f ≥ t}|dt+ λ

∫ 1

0

|{g ≥ t}|dt

≥ (by the arithmetic-geometric mean inequality)

≥
(∫

R
f(x)dx

)1−λ(∫
R
g(x)dx

)λ
For general measurable functions we apply approximation arguments and the

monotone convergence theorem.

Induction for n > 1.
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Fix x1 ∈ R, let fx1
: Rn−1 → [0,∞) be fx1

(x2, . . . , xn) = f(x1, . . . , xn). When-
ever z1 = (1− λ)x1 + λy1, we have

hz1((1− λ)(x2, . . . , xn) + λ(y2, . . . , yn)) ≥ fx1
(x2, . . . , xn)1−λgy1(y2, . . . , yn)λ

for any (x2, . . . , xn), (y2, . . . , yn) ∈ Rn−1.
By the induction hypothesis∫

Rn−1

hz1(z)d z ≥
(∫

Rn−1

fx1(x)d x

)1−λ(∫
Rn−1

gy1(y)d y

)λ
.

Applying again the inequality for n = 1 and Fubini’s theorem we obtain the
result.

�

If we consider characteristic functions, we have f = χA, g = χB , A,B ⊆ Rn

Corollary 2.1. (Brunn-Minkowski inequality)
Let A,B two Borel sets in Rn. For any 0 ≤ λ ≤ 1

(1) |A|1−λ|B|λ ≤ |(1− λ)A+ λB|

or equivalently

(2) |A| 1n + |B| 1n ≤ |A+B| 1n

whenever A 6= ∅ 6= B.

It is clear that (1) and (2) are equivalent:

• (1) =⇒ (2) We take

A′ = A/|A| 1n B′ = B/|B| 1n λ = |B| 1n /(|A| 1n + |B| 1n .)

• (2) =⇒ (1)

|(1− λ)A+ λB| 1n ≥ (1− λ)|A| 1n + λ|B| 1n ≥ |A|
1−λ
n |B| λn .

(by the arithmetic-geometric mean inequality)

2.2. Log-concave measures. A measure (or probability measure) dµ(x) in Rn is
log-concave if

dµ(x) = e−V (x)dx

where V : Rn → (−∞,∞] is a convex function (the support of V is an n-dimensional
convex subset in Rn).

Examples.

• The Lebesgue measure in Rn
• The uniform measure on K, convex body in Rn (compact, convex with non

empty interior)
• The exponential measure, dµ(x) = e−|x|dx in Rn

• The classical Gaussian measure in Rn, dµ(x) =
1(√
2π
)n exp

(
−|x|

2

2

)
dx

Brunn-Minkowski inequality for log-concave probabilities
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Theorem 2.2. Any log-concave probability µ on Rn satisfies Brunn-Minkowski
inequality i.e.,

µ((1− λ)A+ λB) ≥ µ(A)1−λµ(B)λ

for any A,B ⊆ Rn borelians and any 0 ≤ λ ≤ 1.

Proof. We take f(x) = χA(x)e−V (x), g(y) = χB(y)e−V (y) and

h(z) = χ(1−λ)A+λB(z)e−V (z).

Then we apply Prékopa-Leindler inequality. �

2.3. Isoperimetric inequality in Rn. The classical isoperimetric inequality says
that among all the Borel sets having the same volume the corresponding Euclidean
ball is the one with the smallest perimeter or, reciprocally, among all the Borel sets
having the same perimeter the corresponding Euclidean ball is the one with the
greatest volume. This fact can be expressed in the following way

Theorem 2.3. Let A any bounded Borel set in Rn, then

|∂A|
1

n−1

|A| 1n
≥ |S

n−1|
1

n−1

|Bn2 |
1
n

,

where

|∂A| = lim inf
t→0

|At| − |A|
t

and At the t-dilation of A is

At = {x ∈ Rn; d(x,A) ≤ t} = A+ tBn2 .

A

t

Proof.

|At| − |A| = |A+ tBn2 | − |A|

≥
(
|A| 1n + tω

1
n
n

)n
− |A|

= nt|A|
n−1
n ω

1
n
n + o(t).

Hence

|∂A| = lim inf
t→0

|At| − |A|
t

≥ n|A|
n−1
n ω

1
n
n

and then

|∂A|
1

n−1

|A| 1n
≥ |S

n−1|
1

n−1

|Bn2 |
1
n

.

�
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2.4. C. Borell’s inequality.

Theorem 2.4. Let µ be a log-concave probability in Rn. Then for any symmetric
convex set A ⊆ Rn with µ(A) ≥ θ ≥ 1

2 we have

µ(tA)c ≤ θ
(

1− θ
θ

)1+ t
2

∀ t > 1

For instance, if µ(A) ≥ 2/3,

µ(tA)c ≤ 1

2
exp

(
− t log 2

2

)
∀ t > 1

This inequality means that there is an exponential decay of the mass for (t > 1)-
dilations of A symmetric, with absolute constants

Proof. It is a consequence of the fact that

Ac ⊇ 2

t+ 1
(tA)c +

t− 1

t+ 1
A

and Brunn-Minkowski inequality

1− θ ≥ µ(Ac) ≥ µ((tA)c)
2
t+1µ(A)

t−1
t+1 .

�

Corollary 2.2 (Reverse Hölder’s inequality and exponential decay of semi-norms).
There exist absolute constants C1, C2 > 0 such that for any log-concave probability
on Rn and for any semi-norm f : Rn → [0,∞) we have

i)

(∫
Rn
fpdµ

) 1
p

≤ C1p

∫
Rn
fdµ, ∀ p > 1

ii) µ

{
x ∈ Rn : f(x) ≥ C2t

∫
Rn
fdµ

}
≤ 2 exp (−t log 2) , ∀ t > 0.

Proof. i) Since any semi-norm is integrable we can assume that

∫
Rn
fdµ = 1. Let

A = {f < 3}. By Markov’s inequality µ(A) ≥ 2/3. Then

µ {f ≥ 3t} = µ(tA)c ≤ 1

2
exp

(
−t log 2

2

)
, t > 1.

Let p > 1 ∫
Rn
fpdµ =

∫ 3

0

p tp−1µ{f > t}dt+

∫ ∞
3

p tp−1µ{f > t}dt

≤ 3p + 3p
∫ ∞

1

p sp−1e−2sds ≤ (C1p)
p

for some absolute constant C1 > 0 and i) follows.

ii) Assume that

∫
Rn
fdµ = 1.

By Markov’s inequality, taking p = t ≥ 1
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µ{f > 2C1t} = µ

{
f

2C1t
> 1

}
≤
∫

f t

(2C1t)t
dµ

≤ (C1t)
t

(2C1t)t
= e−t log 2

For 0 < t ≤ 1, the trivial bound 1 does the job.
�

Remark. Inequalities for the moments:

Consider the case in which f(x) = |x|. We use the fact that Eµ|x|p =

∫
Rn
|x|pdµ

• By Borell’s inequality

(Eµ|x|p)
1
p ≤ C1pEµ|x| ∀ p > 1

and

µ {|x| ≥ C2tEµ|x|} ≤ 2 exp (−t) , ∀ t > 0.

• Paouris (2006) improved the inequality to

(Eµ|x|p)
1
p ≤ C max {Eµ|x|, pλµ}

where λµ = supθ∈Sn−1

(
Eµ|〈x, θ〉|2

) 1
2 . We also have

µ{|x| ≥ CtEµ|x|} ≤ exp

(
−3

tEµ|x|
λµ

)
for t ≥ 1, which is is stronger that Borell’s inequality.

3. Isoperimetric inequalities

In this section we will study isoperimetric inequalities with respect to log-concave
probabilities. We will consider their corresponding functional Poincaré’s inequali-
ties and will show E. Milman’s result on the role on convexity.

3.1. Isoperimetric versus functional inequalities. As we said before the clas-
sical isoperimetric inequality on Rn says that

|∂A| ≥ C |A|1− 1
n ∀ bounded borel A ⊆ Rn,

where C = |Sn−1|
|Bn2 |

1− 1
n

and |∂A| is the outer Minkowski content of A, defined by

|∂A| = lim inf
ε→0

|Aε| − |A|
ε

,

being
Aε = {a+ x; a ∈ A, |x| < ε} = A+ εB

is the ε-dilation of A. The outer Minkowski content coincides with the (n − 1)-
dimensional Hausdorff measure of the boundary for bounded Borel sets with smooth
enough boundary.

We know that another approach for proving the classical isoperimetric inequality
is to establish the corresponding Sobolev inequality in the extreme

Theorem 3.1 (Ferderer-Fleming). The following statements are equivalent with
the same constant C:
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• For any bounded Borel set A ⊂ Rn

|∂A| ≥ C |A|1− 1
n .

• For any locally Lipschitz compactly supported function f : Rn → R

‖ |∇f | ‖1 ≥ C‖f‖ n
n−1

.

Here

‖f‖ n
n−1

=

(∫
Rn
|f(x)|

n
n−1 dx

)n−1
n

and

|∇f(x)| = lim sup
y→x

|f(y)− f(x)|
|y − x|

,

which is defined for every x ∈ Rn and coincides almost everywhere with the classical
modulus of the gradient due to Rademacher’s theorem.

3.2. Isoperimetric inequalities for log-concave probabilities. Kannan, Lovász
and Simonovits [KLS] posed the following question which originally arose in relation
with some problems in theoretical computer science, i.e. an algorithmic question
about the complexity of volume computation for convex bodies: Given a convex
body in K ⊂ Rn find a surface which divide K into two parts whose measure is
minimal relative to the volume of the two parts.

K1

K2S

Namely, which is the greatest constant that makes the following formula true?

voln−1(∂KK1) ≥ C vol(K1) · vol(K2)

vol(K)
.

If we normalize µ(A) =
|A|
|K|

we have

voln−1(∂KK1) ≥ C
vol(K1) · vol(K2)

vol(K)

m
µ+(A) ≥ C µ(A)µ(Ac)

which is known as Cheeger-type isoperimetric inequality. Hence the problem is,
given µ (the uniform probability on a convex body K or more generally any log-
concave probability), estimate the best constant C > 0 for which

µ+(A) ≥ Cµ(A)µ(Ac) ∀ Borel set A ⊆ Rn

m

µ+(A) ≥ C ′min{µ(A), µ(Ac)} ∀ Borel set A ⊆ Rn
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C ≥ C ′ ≥ C

2
where

µ+(A) := lim inf
ε→0

µ(Aε)− µ(A)

ε
and

Aε = {a+ x; a ∈ A, |x| < ε}
In a similar way to the classical one we have the following result

Theorem 3.2 (Maz’ja, Cheeger). Let µ be a Borel probability measure in Rn. The
following statements are equivalent:

i) For any Borel set A ⊆ Rn

µ+(A) ≥ C1 min{µ(A), µ(Ac)}
ii) For any integrable and locally Lipschitz function f

C2‖f − Eµf‖1 ≤ ‖ |∇f | ‖1.
Moreover C2 ≤ C1 ≤ 2C2.

Here we have used the following notation:

Eµ f =

∫
Rn
f dµ and ‖g‖1 = Eµ|g| =

∫
Rn
|g|dµ

Proof: i) =⇒ ii)
We use the coarea formula

Lemma 3.1 (Federer). Let f : Rn → R smooth, g : Rn → [0,∞) measurable. Then∫
Rn
g(x) · |∇f(x)|dx =

∫ ∞
−∞

∫
{f(x)=t}

g(f−1(t))dHn−1 dt

If g = 1 then ∫
Rn
|∇f(x)|dx =

∫ ∞
−∞

∫
{f(x)=t}

dHn−1 dt

=

∫ ∞
−∞
Hn−1{x ∈ Rn; f(x) = t}dt

For locally Lipschitz functions we have

Lemma 3.2 ([BH]). Assume that f > 0 is locally Lipschitz and µ is a log-concave
probability ∫

Rn
|∇f(x)|dµ(x) ≥

∫ ∞
0

µ+{f > t}dt

where At = {x ∈ Rn : f(x) > t}.

Assume that f > 0. Then∫
Rn
|∇f(x)|dµ(x) ≥

∫ ∞
0

µ+{f > t}dt

≥ (by i))

≥ C1

∫ ∞
0

min{µ(At), µ(Act)}dt ≥ (∗)
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where At = {x ∈ Rn : f(x) > t} and so,

(∗) ≥ C1

∫ ∞
0

µ(At)µ(Act)dt =
C1

2

∫ ∞
0

‖χAt − EµχAt‖1dt

=
C1

2

∫ ∞
0

sup
‖g‖∞=1

∫
Rn

(χAt(x)− EµχAt)g(x)dµ(x)dt

≥ C1

2
sup
‖g‖∞=1

∫ ∞
0

∫
Rn

(χAt(x)− EµχAt)g(x)dµ(x)dt = (∗∗)

Hence

(∗∗) =
C1

2
sup
‖g‖∞=1

∫ ∞
0

∫
Rn
χAt(x)(g(x)− Eµg)dµ(x)dt

=
C1

2
sup
‖g‖∞=1

∫
Rn

(g(x)− Eµg)f(x)dµ =
C1

2
‖f − Eµf‖1.

In the general case we proceed for bounded below functions and then by an ap-
proximation argument.

Proof: ii) =⇒ i) Let A be a Borel set in Rn. Given 0 < ε < 1, we define

fε(x) = max

{
0, 1− d(x,Aε

2

)

ε− ε2

}
.

• 0 ≤ fε(x) ≤ 1

• fε(x) = 1 if x ∈ Aε2
(
⊇ A

)
• f(x) = 0, whenever d(x,A) > ε
• limε→0 fε = χA
•

|fε(x)− fε(y)| ≤ 1

ε(1− ε)

∣∣∣ d(x,Aε
2

)− d(y,Aε
2

)
∣∣∣ ≤ |x− y|

ε(1− ε)

• fε is locally Lipschtiz and

|∇fε(x)| ≤ 1

ε− ε2
x ∈ Rn.

|∇fε(x)| = 0 whenever x ∈ {x ∈ Rn; d(x,A) > ε} ∪ Aε2 ⊇ {x ∈ Rn; d(x,A) >
ε} ∪A.

Thus, ∫
Rn
|∇fε(x)|dµ(x) ≤ µ(Aε+ε

2

)− µ(A)

ε− ε2
.

By ii),

C2‖fε − Eµfε‖1 ≤
µ(Aε+ε

2

)− µ(A)

ε− ε2

and letting ε→ 0+ we obtain

2C2µ(A)µ(Ac) ≤ µ+(A).

this gives

C2 min{µ(A), µ(Ac)} ≤ µ+(A).
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3.3. Poincaré inequalities associated to a log-concave µ. Given 1 ≤ p ≤ q ≤
∞, we introduce

Definition 3.1. Dp,q(µ) is the greatest constant that makes the following inequality
true

Dp,q‖f − Eµf‖p ≤ ‖ |∇f | ‖q
for any locally Lipschitz integrable functions f ∈ Lp(dµ).

• Case p = q = 1: D1,1 is equivalent to the isoperimetric Cheeger constant
for µ

• Case p = q = 2: is the Poincaré inequality for dµ = eV (x)dx.

m

D2
2,2

∫
Rn

∣∣f − ∫
Rn
f dµ

∣∣2dµ︸ ︷︷ ︸ ≤
∫
Rn

∣∣∇f |2 dµ
Varµ(f)

• D2
2,2 = λ2 is known as the spectral gap of µ, which is the first eigenvalue of

the Laplace-Beltrami operator

L = ∆− 〈∇V,∇〉

associated to µ.

Proposition 3.1. The following relations hold:

• By Hölder’s inequality, if 1 ≤ p ≤ q ≤ ∞

Dp,q ≤ Dp,∞ ≤ D1,∞

Dp,q ≤ D1,q ≤ D1,∞

• Maz’ja and Cheeger (1960)

D1,1 ≤ CD2,2,

where C is an absolute constant
• Easy modification of Hölder’s inequality

Dp,p ≤ Cp′Dp′,p′ ∀1 ≤ p ≤ p′ ≤ ∞,

where C is an absolute constant

Much more important and difficult are

Theorem 3.3. If µ is a log-concave probability we have

i) Ledoux (1994):

D2,2 ≤ CD1,1

ii) E. Milman (2010):

D1,∞ ≤ CD1,1

In consequence

Dp,q ≤ D1,∞ ≤ CD1,1 ≤ C pDp,q

C absolute (independent of µ and even of the dimension)

The part ii) of the theorem 3.3 is consequence of the following result
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Theorem 3.4 (E. Milman [EM1]). Let µ be a log-concave probability in Rn. As-
sume that

D1,∞Eµ|f − Eµf | ≤ ‖ |∇f | ‖∞ ∀ f locally Lipschitz

Then

µ+(A) ≥ CD1,∞µ(A)2 ∀ borelian µ(A) ≤ 1

2
,

where C > 0 is an absolute constant. Moreover

CD1,∞Eµ|f − Eµf | ≤ Eµ|∇f |
and

CD1,∞ ≤ D1,1.

Proof. The moreover part: µ+(A) ≥ CD1,∞µ(A)2 is enough. Indeed,

µ(A) =
1

2
=⇒ µ+(A) ≥ CD1,∞

4

The isoperimetric profile defned by

Iµ(t) := inf{µ+(A) : µ(A) = t}, 0 ≤ t ≤ 1

2

is a concave function (this result is true both in Riemannian geometry and for
log-concave probabilities due to the work of a lot of people: Bavard-Pansu, Bérard-
Besson-Gallot, Gallot, Morgan-Johnson, Sternberg-Zumbrun, Kuwert, Bayle-Rosales,
Bayle, Morgan, Bobkov).

Given 0 ≤ t ≤ 1
2

Iµ(t) ≥ 2tIµ

(
1

2

)
≥ 2tCD1,∞

1

4
≥ CD1,∞

t

2
.

Then

µ+(A) ≥ CD1,∞µ(A) whenever µ(A) ≤ 1

2
.

Hence, Cheeger’s theorem implies

Eµ|∇f | ≥ CD1,∞Eµ|f − Ef |.
Next we will use the semigroups technique introduced by Ledoux: Given dµ =

e−V (x)dx, V convex and smooth, let

L = ∆− 〈∇V,∇〉
the associated Laplace-Beltrami operator. Let (Pt)t≥0 be the semigroup generated
by L It is characterized by the heat diffussion given by the following system of
differential equations of second order

d

dt
Pt(f) = L(Pt(f))

P0(f) = f

for every bounded smooth function f .
The main properties are:

1) Pt(1) = 1
2) f ≥ 0 =⇒ Pt(f) ≥ 0
3) EµPt(f) = Eµf
4) Eµ|Pt(f)|p ≤ Eµ|f |p, ∀p ≥ 1
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5) (Bakry-Ledoux). If 2 ≤ q ≤ ∞ and f bounded and smooth

‖ |∇Pt(f)| ‖Lq(µ) ≤
1√
2t
‖f‖Lq(µ).

6) (Ledoux) If f bounded smooth

‖f − Pt(f)‖L1(µ) ≤
√

2t‖ |∇f | ‖L1(µ).

Assume now that A is closed, µ(A) ≤ 1

2
. Given ε > 0, let Aε = {x ∈ Rn :

d(x,A) < ε}. The function χA,ε(x) = max{1− 1
εd(x,A), 0} is Lipschitz and

• limε→0 χA,ε(x) = 1⇐⇒ x ∈ A
•

|∇χA,ε(x)| =


= 0, if x ∈ intA

= 0, if d(x,A) > ε

≤ 1
ε , if x /∈ intA, 0 ≤ d(x,A) ≤ ε.

Then

µ(Aε)− µ(A)

ε
≥
∫
Rn
|∇χA,ε(x)|dµ(x)

≥ (by 6) ≥ 1√
2t
Eµ|χA,ε − Pt(χA,ε)|.

When ε→ 0 we have
√

2t µ+(A) ≥ Eµ|χA − Pt(χA)| = 2

(
µ(A)−

∫
A

Pt(χA)(x)dµ(x)

)
= 2
(
µ(A)µ(Ac)− Eµ(χA − µ(A))(Pt(χA)− µ(A))

)
≤ (by Hölder)

≥ 2
(
µ(A)µ(Ac)− ‖χA − µ(A)‖∞Eµ|Pt(χA)− µ(A)|

)
.

We use the hypothesis and we have

Eµ|Pt(χA)− µ(A)| ≤ 1

D1,∞
Eµ|∇Pt(χA)|,

since EµPt(χA) = µ(A). Also ∇Pt(χA − µ(A)) = ∇Pt(χA), so

Eµ|∇Pt(χA)| ≤ ‖|∇Pt(χA)||2

≤ (by 5) ≤ 1√
2t
‖PtχA − µ(A)‖2

≤ ( by 4) ≤ 1√
2t
‖χA − µ(A)‖2 ≤

1√
2t
‖χA − µ(A)‖∞

≤ 1√
2t
.

Since µ(A) ≤ 1

2
,

√
2tµ+(A) ≥ µ(A)− 2√

2tD1,∞
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Choose
√

2tD1,∞ = 4/µ(A) and we get

µ+(A) ≥ 8D1,∞µ(A)2.

�

4. K-L-S spectral gap conjecture

Given µ a log-concave probability on Rn, the Kannan-Lovász-Simonovits prob-
lem is to estimate the greatest constant in the inequality

µ+(A) ≥ Cµ(A) ∀ Borel set, µ(A) ≤ 1

2
.

We know that this problem is equivalent, up to absolute constants, to estimate
the best constant in Poincaré ’s inequality

λ2Eµ|f − Eµf |2 ≤ Eµ|∇f |2 ∀ locally Lipschitz f

and also equivalent to estimate the best constant in

C ′Eµ|f − Eµf |2 ≤ 1 ∀ 1-Lipschitz f

Kannan-Lovász-Simonovits conjectured that

KLS Conjecture The greatest constant is attained for affine functions, up to an
absolute constant.

Let f be an affine function on Rn, f(x) = t+ 〈a, x〉, t ∈ R, a ∈ Rn. Its Lipschitz
constant is |a|. If we assume that f is affine and 1-Lipschitz, then f(x) = t+ 〈θ, x〉,
t ∈ R, θ ∈ Sn−1. Thus, Eµf = t+ 〈θ,Eµx〉 and

Eµ|f − Eµf |2 = Eµ〈θ, x− Eµx〉2

Let

λ2
µ := sup

θ∈Sn−1

Eµ〈θ, x− Eµx〉2

(λµ is greatest eigenvalue of the covariance matrix of µ) Hence

KLS Conjecture (equivalent formulation) Let µ be a log-concave probability
on Rn with barycenter Eµx. Let λ2

µ = sup
θ∈Sn−1

Eµ〈x− Eµx, θ〉2. Then

Eµ|f − Eµf |2 ≤ Cλ2
µEµ|∇f |2

for some absolute constant C > 0.

4.1. Known results.

Theorem 4.1 (KLS estimate, [KLS]). Given µ (log-concave) and f Lipschitz

Eµ|f − Eµf |2 ≤ CEµ|x− Eµx|2 · Eµ|∇f |2,

where C > 0 is an absolute constant.
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Proof.

Eµ|f − Eµf |2 ≤ Eµ
(
|f(x)− f(Eµx)|+ |f(Eµx)− Eµf |

)2
= Eµ

(
|f(x)− f(Eµx)|+ |Eµ(f(Eµx)− f)|

)2
≤ (by Minkowski’s inequality)

≤ 4Eµ|f(x)− f(Eµx)|2

≤ 4Eµ|x− Eµx|2 · ‖|∇f |‖2∞
≤ CEµ|x− Eµx|2 · Eµ|∇f |2.

This inequality is worse than the one conjectured by the authors since Eµ|x −
Eµx|2 =

∑n
i=1 Eµ(xi − Eµxi)2 ≤ nλ2

µ. �

Theorem 4.2 (Payne-Weinberger (1960)). If µ is the normalized uniform measure
on a convex body K

Eµ|f − Eµf |2 ≤
4

π2
diam(K)2 · Eµ|∇f |2

If Bn2 is the Euclidean ball and µ the normalized uniform measure on it the sharp
estimate is

Eµ|f − Eµf |2 ≤
C

n
· Eµ|∇f |2.

The first estimate in Payne-Weinberger inequality is a trivial consequence of KLS
estimate since

Eµ|x− Eµx|2 ≤ (by Jensen) ≤ Eµ⊗µ|x− y|2 ≤ (diam K)2.

The second one is much more acurate.

Theorem 4.3. Talagrand (1991) Let dµ(x) =
1

2n
e−

∑n
i=1 |xi|dx. Then

Eµ|f − Eµf |2 ≤ C · Eµ|∇f |2

(This is the classical Talagrand’s inequality for the exponential probability)

Theorem 4.4 (Gaussian case). Let dµ(x) = (2π)−n/2e−|x|
2/2. Then

Varµf = Eµ|f − Eµf |2 ≤ Eµ|∇f |2

Proof. It is easy to see that λµ = 1. Let u ∈ D(Rn) be a test functions. Consider
the associated Laplace-Beltrami operator L

Lu(x) = ∆u(x)− 〈x,∇u(x)〉.

We know that {Lu;u ∈ D} is dense in {f ∈ L2(Rn, dµ) : Eµf = 0}. Then,
infu∈D

{
Eµ(Lu− f)2

}
= 0 and integrating by parts

• Eµf Lu = −Eµ〈∇f,∇u〉 (Green’s formula)
• Eµ(Lu)2 = Eµ〈∇u,∇u〉+ Eµ

∑
i,j(∂iju(x))2 ≥ Eµ|u|2

Assume that Eµf = 0. Since

Varµf = Eµ
∣∣f − Eµf ∣∣2 = Eµf2
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we have

Eµf2 − Eµ(Lu− f)2 = 2Eµf Lu− Eµ(Lu)2

≤ −2Eµ〈∇f,∇u〉 − Eµ|u|2

≤ Eµ|∇f |2.
Taking the infimum in u we obtain the result.

Varµf ≤ λ2
µ · Eµ|∇f |2

�

Theorem 4.5. The normalized measure on the classes before verify the KLS con-
jecture

• p-balls, 1 ≤ p ≤ ∞ (Sodin 2008 ,  Latala&Wojtaszczyk, 2008)
• The simplex (Barthe and Wolff, 2009)
• Some revolution bodies (Bobkov 2003, Hue 2011)
• Unconditional bodies (Klartag, 2009)with a log n constant, i.e.

Varµf = Eµ |f − Eµf |2 ≤ Clog nλ2
µ Eµ|∇f |2

(A convex body K is unconditional if (x1, . . . , xn) ∈ K if and only if
(|x1|, . . . , |xn|) ∈ K).

A general upper bound which is the best known estimate, up to now, is

Theorem 4.6 (Guédon-Milman (2011) + Eldan (2013)). For any log-concave prob-
ability in Rn, Poincaré’s inequality is true in the following way

Varµf = Eµ
∣∣f − Eµf ∣∣2 ≤ Cn2/3(log n)2 λ2

µ Eµ|∇f |2

for any locally Lipschitz integrable function f .

4.2. Relations with other conjectures. There are other well-known geomet-
ric and probabilistic conjectures related with the KLS conjecture. They are the
variance or thin shell conjecture and the slicing problem.

The slicing problem, Bourgain (1986): There exists an absolute constant C >
0 such that every convex body K in Rn with volume 1 has, at least, one (n − 1)-
dimensional section such that

|K ∩H|n−1 ≥ C.

The slicing problem or hyperplane conjecture was introduced by Bourgain when
he was proving the boundedness in Lp of the Hardy-Littlewood maximal function
on convex bodies. It is known to be true in the following families

• Unconditional convex bodies
• Zonoids
• Random polytopes
• Polytopes in which the number of vertices is proportional to de dimension,

i.e., for instance, N/n ≤ 2
• The unit balls of finite dimensional Schatten classes,for 1 ≤ p ≤ ∞
• (n− 1)-orthogonal projection of the classes above
• and more

and a general estimate is
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Theorem 4.7. There exists an absolute constant C > 0 such that for every convex
body K in Rn with volume 1 at least one (n− 1)-dimensional section satisfies

• Bourgain (1986), |K ∩H|n−1 ≥
C

n1/4 log n

• Klartag (2006), |K ∩H|n−1 ≥
C

n1/4

Thin shell width or variance conjecture (2003, Bobkov-Koldobsky, Anttila-
Ball-Perissinaki): There exists an absolute constant C > 0 such that for every
log-concave probability µ in Rn

σµ =

√
Eµ
∣∣|x| − Eµ|x|∣∣2 ≤ Cλµ.

It is not difficult to prove that the thin shell conjecture is just the KLS conjecture
to be true for the function |x| or for |x|2. The name is due to the following fact

Theorem 4.8. If the thin shell width conjecture were true, we would have a stronger
concentration of the mass around the mean for log-concave probabilities

µ
{∣∣|x| − Eµ|x|∣∣ > tEµ|x|

}
≤ 2 exp

(
−C ′t 1

2
(Eµ|x|)

1
2

λ
1
2
µ

)
, ∀ t > 0

The thin shell width conjecture is true for the uniform probability on

• Finite dimensional p-balls, 1 ≤ p ≤ ∞
• Finite dimensional Orlicz-balls
• Revolution bodies
• (n− 1)-dimensional orthogonal projections of the crosspolytope (1-ball)
• (n − 1)-dimensional orthogonal projections of the cube and even all their

linear deformations
• Although this conjecture is not linear invariant, in a random sense, more

than half of linear deformations of the classe above also satisfy this conjec-
ture.

The best known estimate

Theorem 4.9 (Guedon-Milman, 2010). There exists an absolute constant C > 0
such that for every log-concave probability µ in Rn

σµ ≤ Cn1/3 λµ.

The relation among the three conjectures is the following:

• Eldan-Klartag (2010) proved that if the thin shell conjecture is true for
all log-concave probabilities then the slicing problem is also true for any
convex body.

• Eldan (2013) proved that if the thin shell width conjecture were true for
any log-concave probability then the Kannan-Lovász-Simonovits spectral
gap conjecture would be true, up to a log n factor.

• In a parallel way Ball-Nguyen (2013) proved that if the KLS conjecture
were true for a family of convex bodies the slicing problem would be true
for this family.

The contribution of the authors respect to the thin shell width conjecture, are
(see [AB1],[AB2])
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• (n − 1)-dimensional orthogonal projections of the cross-polytope (1-ball)
verify this conjecture
• (n − 1)-dimensional orthogonal projections of the cube and even all their

linear deformation verify this conjecture
• (n− 1)-dimensional orthogonal projections of the p-balls verify this conjec-

ture when the orthogonal vectors to the hyperplane on which the projection
is taken are sparse.
• If µ verifies the thin shell width conjecture then ν = µ ◦ T also verifies

the thin shell width conjecture at least for half of T ’s (T linear map) in
a probabilistic meaning and ’at random’ if tha Schatten norm of ‖T‖c4
satisfies

‖T‖HS
‖T‖c4

= o(n
1
4 ).

References

[AB1] D. Alonso-Gutiérrez, J. Bastero, The variance conjecture on some polytopes. In As-

ymptotic Geometric Analysis. Proceedings of the Fall 2010, Fields InstituteTematic Program.
Springer (2013), 1–20.

[AB2] D. Alonso-Gutiérrez, J. Bastero, Approaching the Kannan-Lovász-Simonovits and

variance conjectures. Monograph, to appear in the collection Lecture Notes in Mathematics,
Springer, vol 2131, (2015).

[BN] K. Ball, V. H. Nguyen, Entropy jumps for random vectors with log-concave density and

spectral gap, Studia Mathematica 213, no. 1, 81–96, (2012)
[BC] F. Barthe, D. Cordero-Erausquin, Invariances in variance estimates, Proc. Lond. Math.

Soc. (3) 106, no. 1, 33–64, (2013)

[BW] F. Barthe, P. Wolff, Remarks on non-interacting conservative spin systems: The case
of gamma distributions, Stochastic Processes and their Applications 119, 2711–2723, (2009),
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