COMMUTATORS FOR THE
MAXIMAL AND SHARP FUNCTIONS
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ABSTRACT. The class of functions for which the commutator with the Hardy-Littlewood
maximal function or the maximal sharp function are bounded on L? are characterized
and proved to be the same.

For the Hilbert transform H, and other classical singular integral operators, a
well known and important result due to Coifman, Rochberg and Weiss (cf. [CRW])
states that a locally integrable function b in R™ is in BMQO if and only if the
commutator [H,b], defined by

[H,blf = H(bf) — bH([),

is bounded in LY, for some (and for all) ¢ € (1,00). The cancellation implied by the
commutator operation and the properties of singular integrals are crucial for the
validity of the result. Later in [MS], using real interpolation techniques, Milman
and Schonbeck proved a commutator result that applies to the Hardy-Littlewood
maximal operator M as well as the sharp maximal operator. In fact the commutator
result is valid for a large class of nonlinear operators which we now describe.
Let us say that T is a positive quasilinear operator if it is defined on a suitable
class of locally integrable functions D(T') and satisfies
1) Tf >0, for fe D(T)
i) T(af) = |a|Tf, for « € Rand f € D(T)
5i) [T~ Tgl < T(f - g) for f,g € D(T).
We have (cf. [MS])

Proposition 1. Let b be a non negative BMO function and suppose that T s a
positive quasilinear operator which is bounded on L1(w), for some 1 < ¢ < oo and
for all w weights belonging to the Muckenhoupt class A, for some r € [1,400).
Then [T, 0] is bounded on L1.

In particular the result applies to the maximal operator and the sharp maximal
function. Note that since the Hardy-Littlewood maximal operator M is a positive
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operator, the positivity condition on b seems crucial to effect the necessary can-
cellation. In fact, the closed graph theorem implies that if b is a negative locally
integrable function then, [M, b] is bounded on L9 for some ¢ € (1, 00) if and only if
b € L°°, since in this case we have

M(bf) — BM(f) > BIM(f) > [bf].

However, the question of obtaining a complete characterization of commutators
with the Hardy-Littlewood maximal operator in the spirit of the Coifman-Rochberg-
Weiss theorem has apparently remained open. In this note we show that a slightly
extended form of positivity is a necessary and sufficient condition to characterize
the boundedness of [M,b]. To see what this condition should be we observe that
if M were a linear operator then, given that everything we do is modulo bounded
operators, the correct requirement would appear to be that b € BMQO with its
negative part b~ bounded. Indeed, the sufficiency of the condition b € BM O with
b~ bounded formally follows from previous Proposition, the fact that b € BMO =
|b| € BMO and the estimate

(M, 0] f — [M, bl I < 2 (b7 M(f)). (1)
We summarize the previous discussion with the following

Proposition 2. If b is ¢« BMO function such that its negative part b= is bounded
then the commutator [M,b] is bounded on LY, for all ¢ € (1,00).

The purpose of this note is to prove the converse of the previous Proposition and
to show that a similar characterization also holds for the sharp maximal operator.

Let us formally note that the proof of Proposition 1 given in [MS] implies the
following more general result

Proposition 3. Let b be a function in BMO, with b~ € L™ and let T be a positive
quasilinear operator, which is bounded on Li(w), for some 1 < ¢ < 0o and for all w
weights belonging to the Muckenhoupt class A, for some r € [1,+00). Then [T, ]
18 bounded on LY.

Proof. Note that the following variant of (1) holds for any positive quasilinear
operator T

[T, 81 = [T, bl f| < 2 (b~ T(f) + T(b™ ).
Therefore, since the right hand side is bounded, the result follows immediately
from Proposition 1.

Remark. Since it could be useful for other purposes we note that an alternative
proof of Proposition 3 can be given by following the proof given in [MS] ver-
batim and observing that, under the assumption that b~ is bounded, the pair

(L4(e®), L4(e™?)) is ordered.

Recall that for a locally integrable function and for 1 < p < oo, the Hardy-
Littlewood maximal function is defined by

My(f)(x) = up (ﬁ /Q |f|P>1/p
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for all = € R™, where () denotes a cube with sides parallel to the coordinate axes
and |@Q] the Lebesgue measure of (). Note that for p = 1, M, = M is the classical
Hardy-Littlewood maximal operator. The sharp function is given by

1
2) = M f(z) = sup — — T n
Fi(a) = M f(x) I€g|Q|/Q|f fol. zeR

where as usual we let fg = ﬁ fQ f.

If ()y is a fixed cube, then the Hardy-Littlewood maximal function relative to

Qo 1s given by y
P
My = s (o [ 15

defined for all x € Q.

Our main result for M, can be now stated as follows

Proposition 4. Let b be a real valued, locally integrable function in R™. The
following assertions are equivalent:

(4.1) The commutator [My,b] is bounded in LY, for all ¢, p < ¢ < 0.
(4.2) The commutator [Mpy,b] is bounded in L1, for some ¢, p < ¢ < 0.
(4.3) b is in BMO and b~ s in L.

(4.4) There exists g € [1,00) such that

1
sup—/ |b— M, ob|? < oo.
Q 1@l Jg

(4.5) For all g € [1,00) we have

1
sup—/ |b— M, ob|? < oo.
q 1@l Jo

Proof. Since the implications (4.1) = (4.2) and (4.5) = (4.4) follow readily, we
only have to prove (4.3) = (4.1), (4.2) = (4.4) and (4.4) = (4.3) (the implication
(4.1) = (4.5) is similar to (4.2) = (4.4))

(4.8) = (4.1). The conclusion follows from the Proposition 3 and the fact that M,
is bounded in LY(w) for all w in the class Ag/,.

(4.2) = (4.4). We consider f = yg € L. Then

1/q
(/Q | Mp(bf) — bMp(f)|q> < |[[Mp, B flly < CllFIlg = QI

implies the result, since M, g(xg) = x¢o and M,(bxg)(z) = M,
r€Q.

(4.4) = (4.3). Let @ be a fixed cube. By hypothesis and Hoélder’s inequality we

have
1/q
b — b b — b )
|Q|/| p’Q'<<|Q|/' Q') =¢

o(b)(x) for all
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Let £ = {z € @Q:b(z) < bg} and F = {z € @Q;b(xz) > bg}. The following

equality is trivially true
[ 1o=tol= [ p-tal
E F

|22—|/Q|b_ |@|/'b

Ib My q(b)]
/= Mip. Qb(

Then

IQI
< =
- IQI
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Proposition 6. Let b be a real valued, locally integrable function in R™. The
following assertions are equivalent:

(6.1) The commutator [M?*,b] is bounded in LY for all ¢, 1 < q < o0o.
(6.2) The commutator [M*,b] is bounded in LY for some ¢, 1 < ¢ < oo
(6.3) bis in BMO and b~ s in L™

(6.4) There exists g € [1,00) such that

1
sup o [ o) = 2ot < o
Q |Q| Q
(6.5) For all g € [1,00) we have

L ) — )|z < oo
aup |Q|/Q|b<> 2bq)H ()1 < .

Proof.

(6.3)= (6.1). It follows from Proposition 3, since for all locally integrable functions
f we have M*f < 2M(f) and the weighted estimates are guaranteed.

(6.2) = (6.4). Let Q be a fixed cube as before. Let ()1 be another cube, it is easy

to compute that

L _ _ 2@\ QllinQ| _ 1
@il Jo, o el Q]2 =3

(recall that for non negative numbers: 4rs < (r + s)?). On the other hand, given
z € ) there always exists a cube () containing () and such that |Qq| = 2|@Q|. This
shows that (xg)*(z) = 1/2, for all + € . Hence the conclusion follows readily as
in Proposition 4.

(6.4) = (6.3). We proceed as in the corresponding portion of the proof of Propo-
sition 4, but some extra difficulties appear.
First, our claim is to prove that

[bol < 2(bxq)*(x), « € Q (2)

Let 2 € () and pick a cube @y containing () and with volume |Q4| = 2|@|. Then

() (@) > 2 [ Ibvoly) — (bxg)o, | dy
Q1] Jo,
1 1 1
= 517 ([ 1= o s+ 511\ @l Q

1 / 1 1
= —— bly) — <bo|dy + =|b
20 Q|() 50l 1100l
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On the other hand

1 1 1 1
bol| < — bly) — =bo|d — —bpld
ol = gy [, 1600 = Shald + gy | 15blds

1 1 1
= o1 L ) = ghaldy + 5lbel

and so

1 1 1
sltal < g7 [ ) = gl )

Finally, (3) and (4) lead us to (2).
We can now achieve that b € BMO. Indeed, let E = {z € Q;b(x) < bg}. Then

1 2
[Ql /Q o) =balde =g /E(bQ - e
i ﬁx — X Z
< |Q|/ (2(bxq)*(x) = b(x)) d

|Q|/ ‘2 bXQ b(:z;)‘d:z;
|Q| / ‘2 bXQ b(:z;)‘d:z; <C,

where we have applied (2) and the hypothesis.
In order to prove that b~ € L™ we also use (2). We start from the inequality

2(bxQ)¥(x) = bx) = [b| — b¥(x) + b7 (z), = € Q.

Averaging on ), we have

‘ =

C

Y

O

[2(bx@)*(x) — b(x)|dx

(2(bx@)¥(z) = b(x))dx

‘ =

> (Ibgl = b¥(x) + b~ (2))dx

O

(V4
N
a\a\a\

9]
b b"" d:z;
= lbol = |Q| (=)de + |Q|/

Leting |@| — 0, with = € @, Lebesgue differentiation theorem assures that
C 2 b)) — b () + b (2) = 2™ (o)

and the desired result follows.
The remaining proofs are similar to the ones in Proposition 4 and we leave the
details to the interested reader.
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