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Abstract. We show that for any 1 ≤ p ≤ ∞, the family of random vectors

uniformly distributed on hyperplane projections of the unit ball of `np verify
the variance conjecture

Var |X|2 ≤ C max
ξ∈Sn−1

E〈X, ξ〉2E|X|2,

where C depends on p but not on the dimension n or the hyperplane. We will
also show a general result relating the variance conjecture for a random vector

uniformly distributed on an isotropic convex body and the variance conjecture

for a random vector uniformly distributed on any Steiner symmetrization of
it. As a consequence we will have that the class of random vectors uniformly

distributed on any Steiner symmetrization of an `np -ball verify the variance
conjecture.

1. Introduction and notations

A probability measure µ on Rn is said to be log-concave if it has a density with
respect to the Lebesgue measure

dµ(x) = e−V (x)dx,

where V : Rn → (−∞,∞] is a convex function. For instance, the uniform probabil-
ity measure on a convex body and the Gaussian measure are examples of log-concave
probabilities on Rn. A log-concave random vector X is a random vector in Rn dis-
tributed according to a log-concave probability measure. A log-concave random
vector X is called isotropic if the following two conditions hold:

• The barycenter is at the origin, i.e., EX = 0,
• The covariance matrix is the identity In, i.e. E〈X, ei〉〈X, ej〉 = δi,j ,

where {ei}ni=1 denotes the canonical basis in Rn, δi,j is the Kronecker delta, 〈·, ·〉 is
the usual scalar product in Rn, and E denotes the expectation. We will also denote
by Var the variance. It is well known that for any log-concave random vector X
there exists an affine map T , with non-zero determinant, such that TX is isotropic.
If X is centered then T is non-degenerate linear map T ∈ GL(n).

Given a centered log-concave random vector X, we will denote by λ2
X the largest

eigenvalue of its covariance matrix MX

λ2
X = ‖MX‖`n2→`n2 = max

ξ∈Sn−1
E 〈X, ξ〉2,

where Sn−1 denotes the Euclidean unit sphere in Rn.
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The variance conjecture was considered by Bobkov and Koldobsky in the context
of the Central Limit Problem for isotropic convex bodies (see [BK]) and it states
the following:

Conjecture 1.1. There exists an absolute constant C such that for every isotropic
log-concave random vector X

Var |X|2 ≤ CE |X|2 = Cn.

It was conjectured before by Antilla, Ball, and Perissinaki (see [ABP]) that for
an isotropic log-concave random vector X, |X| is highly concentrated in a “thin
shell” more than the trivial bound Var |X| ≤ E |X|2 suggests.

The variance conjecture is a particular case of a stronger conjecture, due to
Kannan, Lovász, and Simonovits (see [KLS]), concerning the spectral gap of log-
concave probability measures. This conjecture can be stated in the following way
due to the work of Cheeger, Maz’ya and Ledoux, among others:

Conjecture 1.2. There exists an absolute constant C such that for any centered
log-concave random vector X and for any locally Lipschitz function g : Rn → R
such that the random variable g(X) has finite variance

Var g(X) ≤ Cλ2
XE |∇g(X)|2.

Notice that Conjecture 1.1 is the particular case of Conjecture 1.2 when g(X) =
|X|2 and X is isotropic. One can also consider the particular case in which g(X) =
|X|2 but X is not necessarily isotropic. This gives the following general variance
conjecture

Conjecture 1.3. There exists an absolute constant C such that for every centered
log-concave random vector X

Var |X|2 ≤ Cλ2
XE |X|2.

This general variance conjecture was considered before in [AB1], where it was
shown that uniform probability measures on hyperplane projections of Bn1 and Bn∞
(the unit balls of `n1 and `n∞) verify it. In the particular case that we consider X
isotropic this conjecture becomes Conjecture 1.1. However, it is not clear whether
these conjectures are equivalent since the general case is not deduced from the
isotropic case because we are considering only the function g(X) = |X|2. Some
estimates for the constant in Conjecture 1.3, when considering linear deformations
of isotropic random vectors verifying Conjecture 1.1 were given in [AB1] and [AB2].

Not many examples are known to verify these conjectures. Conjecture 1.2 is
known to be true for a Gaussian random vector and random vectors uniformly dis-
tributed on the `np -balls, some revolution bodies, the simplex, and, with an extra
log n factor, on unconditional bodies and log-concave probabilities with many sym-
metries (see [BaC], [BaW], [B], [H], [K], [LW], [S]). The best general known result in

Conjecture 1.2 adds a factor n
2
3 (log n)2 and is due to Guédon-Milman, who proved

the best known estimate in Conjecture 1.1 with an extra factor n
2
3 (see [GM]),

and Eldan, who proved that the variance conjecture implies the Kannan-Lovász-
Simonovits conjecture, up to a logarithmic factor (see [E]). Besides, Conjecture 1.3
(and thus, 1.1) is true for random vectors uniformly distributed on unconditional
bodies [K] and, as mentioned before, hyperplane projections of Bn1 and Bn∞ (see
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[AB1]), and increments of log-concave martingales (see [CG]). For more informa-
tion on these conjectures and their relation with some other problems in asymptotic
convex geometry we also refer the reader to the monographs [BGVV] and [AB2].

In this paper we approach the study of the general variance conjecture for the
class of random vectors uniformly distributed on projections of Bnp , the unit balls

of `np 1 < p <∞, onto (n−1)-dimensional subspaces H = θ⊥, extending the results
obtained for p = 1,∞ in [AB1]. Namely, we will prove the following

Theorem 1.1. There exists an absolute constant C such that for any hyperplane
H = θ⊥, with θ ∈ Sn−1, if X is a random vector uniformly distributed on PH(Bnp )
we have that if p ≤ n

Var |X|2 ≤ C log(1 + p)λ2
XE |X|2

and if p > n

Var |X|2 ≤ Cλ2
XE |X|2.

Furthermore, if 1 ≤ p ≤ n the set of vectors θ ∈ Sn−1 such that

Var |X|2 ≤ Cλ2
XE |X|2

has Haar probability measure greater than 1− 1
2n .

Notice that the value of the constant in the theorem depends on p if p ≤ n and
does not depend on p if p > n. The reason for this discontinuity in the value of the
constant is just technical. Our proof gives a constant C log(1 + p) for every value
of p ∈ [1,∞] and, using a different method we were able to give a better estimate,
independent of p, that holds for values of p greater than n.

We would like to remark that we are considering a random vectors uniformly dis-
tributed on projections of Bnp and not the projections of random vectors uniformly
distributed on Bnp . When considering the projections of the random vectors the
situation is much simpler. Even though it is probably straightforward for special-
ists, for the sake of completeness we will give in Section 5 a general result showing
that an isotropic log-concave random vector verifies the variance conjecture if and
only if any of its hyperplane projections does.

A convex body K is called isotropic if it has volume 1, |K| = 1, and for any vector
θ ∈ Sn−1 we have E〈X, θ〉 = 0 and E〈X, θ〉2 = L2

K , where X is a random vector
uniformly distributed on K and LK does not depend on θ and is called the isotropic
constant of K. Thus, K is isotropic if and only if the random vector uniformly
distributed on L−1

K K is isotropic. Given a convex body K and a hyperplane H =
θ⊥, with θ ∈ Sn−1, the Steiner symmetrization of K with respect to H is the convex
body defined as

Sθ(K) =

{
x+ tθ : x ∈ Pθ⊥K, |t| ≤

1

2
|K ∩ (x+ 〈θ〉) |

}
,

where 〈θ〉 denotes the one-dimensional subspace spanned by θ. We will also study
the relation between the variance conjecture for a random vector uniformly dis-
tributed on an isotropic convex body and a random vector uniformly distributed on
the Steiner symmetrization of it with respect to any hyperplane. We will show the
following general result, which shows that a random vector uniformly distributed
on an isotropic body verifies the variance conjecture if and only if a random vector
uniformly distributed on any of its Steiner symmetrizations does. As a consequence,
if a random vector uniformly distributed on an isotropic convex body K verifies
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the variance conjecture, then the class of random vectors uniformly distributed on
any of its Steiner symmetrizations also verify the variance conjecture.

Theorem 1.2. Let K be an isotropic convex body and θ ∈ Sn−1. Let us denote
by X a random vector uniformly distributed on K and by Yθ a random vector
uniformly distributed on Sθ(K), the Steiner symmetrization of K with respect to
H = θ⊥. Then the following are equivalent

• There exists a constant C1 such that

Var |X|2 ≤ C1λ
2
XE |X|2.

• There exists a constant C2 such that

Var|Yθ|2 ≤ C2λ
2
Yθ
E |Yθ|2

for some θ ∈ Sn−1.
• There exists a constant C3 such that

Var |Yθ|2 ≤ C3λ
2
Yθ
E |Yθ|2

for every θ ∈ Sn−1,

where

C2 ≤ C3 ≤ 2(C1 + C) and C1 ≤ C2 + C,

with C an absolute constant.

The paper is organized as follows: We will prove Theorem 1.1 in Section 4. In
Section 2 we will present some known results that we will use and in Section 3
we will prove some technical lemmas we will need to prove Theorem 1.1. Finally,
in Section 5 we will show the general results concerning the variance conjecture
for projections of isotropic log-concave random vectors and for random vectors
uniformly distributed on the Steiner symmetrizations of an isotropic convex body.
We will always use the letters c, C,C ′ to denote absolute constants and will use
a ∼ b to denote the existence of two positive absolute constants c, C such that
ca ≤ b ≤ Ca.

2. Preliminaries

In this Section we present the tools we use to prove the aforementioned results.
We will use the techniques developed in [BaN]. We will denote by σnp the uniform
area measure (Hausdorff measure) on ∂Bnp , the boundary of Bnp , and by µnp the
cone probability measure on ∂Bnp , defined by

µnp (A) =
|{ta ∈ Rn; a ∈ A, 0 ≤ t ≤ 1}|

|Bnp |
A ⊆ ∂Bnp .

A relation between these two measures was proved in [NR]. For the sake of com-
pleteness we include a short proof of it in the following lemma:

Lemma 2.1. Let σnp and µnp be the uniform area measure and the cone probability
measure on ∂Bnp . Then

dσnp (x)

dµnp (x)
= n|Bnp | |∇(‖ · ‖p)(x)|

for almost every point x ∈ ∂Bnp .
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Proof. Let g : ∂Bnp → R be an integrable function with respect to µnp . Denoting by
σt∂Bnp the uniform area measure on t∂Bnp and using the co-area formula, we have
that ∫

∂Bnp

g(y)dµnp (y) =
1

|Bnp |

∫
Bnp

g

(
x

‖x‖p

)
dx

=
1

|Bnp |

∫ 1

0

∫
t∂Bnp

g
(

x
‖x‖p

)
|∇(‖ · ‖p)(x)|

dσt∂Bnp (x)dt

=
1

|Bnp |

∫ 1

0

tn−1

∫
∂Bnp

g(y)

|∇(‖ · ‖p)(y)|
dσnp (y)dt

=

∫
∂Bnp

1

n|Bnp |
g(y)

|∇(‖ · ‖p)(y)|
dσnp (y).

�

Consequently, by using Cauchy’s formula, if H = θ⊥, X is a random vector
uniformly distributed on K = PHB

n
p and f : K → R is a Borel integrable function

E f(X) =
1

|K|

∫
K

f(x)dx

=
1

2|K|

∫
∂Bnp

f(PH(y))
|〈∇‖ · ‖p(y), θ〉|
|∇‖ · ‖p(y)|

dσnp (y)

=

∫
∂Bnp

f(PH(y))|〈∇(‖ · ‖p)(y), θ〉|dµnp∫
∂Bnp
|〈∇(‖ · ‖p)(y), θ〉|dµnp

=

∫
∂Bnp

f(PH(y))
∣∣∑n

i=1 |yi|p−1 sgn(yi)θi
∣∣ dµnp (y)∫

∂Bnp
|
∑n
i=1 |yi|p−1 sgn(yi)θi| dµnp (y)

.

We will use the following probabilistic description of the measure µnp (see, for
instance, [SZ1], [BaN], [NR]): Let g1, . . . , gn be independent copies of a random
variable g with density with respect to the Lebesgue measure

e−|t|
p

2Γ(1 + 1/p)

for every t ∈ R and denote by

S =

(
n∑
i=1

|gi|p
) 1
p

.

Then

• The random vector
G

S
:=
(g1

S
, . . . ,

gn
S

)
and the random variable S are

independent.

• G

S
is distributed on ∂Bnp according to the cone measure µnp .
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Hence

E f(X) =
Ef
(
PH
(
g1
S , . . . ,

gn
S

)) ∣∣∣∑n
i=1

|gi|p−1

Sp−1 sgn(gi)θi

∣∣∣
E
∣∣∣∑n

i=1
|gi|p−1

Sp−1 sgn(gi)θi

∣∣∣ .

By the independence of G
S and S, we have

E f(X) =
Ef
(
PH
(
g1
S , . . . ,

gn
S

)) ∣∣∑n
i=1 |gi|p−1 sgn(gi)θi

∣∣
E |
∑n
i=1 |gi|p−1 sgn(gi)θi|

=
Ef
(
PH
(
G
S

))
ψθ

Eψθ
,

where ψθ is defined as

(1) ψθ =

∣∣∣∣∣
n∑
i=1

|gi|p−1 sgn(gi)θi

∣∣∣∣∣ .
We will sometimes use the notation ψ instead of ψθ when there is no possibility of
confusion.

The following theorem, which will be used to obtain some estimates for the
expected value of ψ, was proved in [ACCP]:

Theorem 2.1. Let 1 < q < ∞, X1, . . . , Xn be independent identically distributed
integrable random variables. For every s ≥ 0 define

M(s) =
q

q − 1

∫ s

0

(∫
|X1|≤ 1

t

tq−1 |X1|q dP +

∫
|X1|>1/t

|X1|dP

)
dt.

Then, for every x ∈ Rn,

c1(q − 1)1/q‖x‖M ≤ E

(
n∑
i=1

|xiXi|q
) 1
q

≤ c2‖x‖M ,

where c1, c2, are positive absolute constants and ‖x‖M denotes the Luxemburg norm
given by the Orlicz function M , which is defined by

‖x‖M = inf

{
ρ > 0 :

n∑
i=1

M

(
|xi|
ρ

)
≤ 1

}
.

We will also make use of the following theorem, which was proved in [KS]:

Theorem 2.2. Let 1 ≤ q ≤ ∞ and a ∈ Rn×n. Then

Aveπ

(
n∑
i=1

|ai,π(i)|q
) 1
q

∼ 1

n

n∑
k=1

(a∗i,j)k +

 1

n

n2∑
k=n+1

(a∗i,j)
q
k

 1
q

,

where a∗i,j ∈ Rn2

is the decreasing rearrangement of a and π runs over all the
permutations of {1, . . . , n}.

In the same paper the authors showed that when q = 2 this estimate can be
estimated by using an Orlicz function.



THE VARIANCE CONJECTURE ON HYPERPLANE PROJECTIONS OF THE `np BALLS 7

3. Some probabilistic estimates

In this section we will prove several technical lemmas we will need in order to
prove Theorem 1.1. The following lemma is well known:

Lemma 3.1. Let α ≥ 0 and let g1, . . . , gn be independent copies of a random

variable g, with density with respect to the Lebesgue measure e−|t|
p

2Γ(1+1/p) , and S =

(
∑n
i=1 |gi|p)

1
p . Then

E|g|α =
Γ
(
α+1
p

)
Γ
(

1
p

)
and

ESα =
Γ
(
n+α
p

)
Γ
(
n
p

)
Proof. The value of E|g|α can be computed directly. Let us compute ESα.

ESα = E

(
n∑
i=1

|gi|p
)α/p

=

∫
Rn
‖x‖αp

e−‖x‖
p
p

(2Γ(1 + 1/p))
n dx.

Changing to polar coordinates

ESα =
n|Bnp |

(2Γ(1 + 1/p))
n

∫ ∞
0

rn+α−1e−r
p

dr

and this expression implies the result. �

This lemma implies the following:

Lemma 3.2. Let X1, . . . , Xn be independent copies of X = g2 − ḡ2, where ḡ is an
independent copy of g, defined as before. Then, for any 2 ≤ α ≤ ep we have(

E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
α) 1

α

≤ C
√
αn.

Proof. By the triangle inequality

(E|X|α)
1
α ≤ 2

(
E|g|2α

) 1
α = 2

Γ
(

1+2α
p

)
Γ
(

1
p

)


1
α

.

Using Stirling’s formula

(E|X|α)
1
α ≤ Cα

2
p ≤ C1,

since α ≤ ep. Now, since the random variables Xi are symmetric, taking ε1, . . . , εn
independent Bernoulli random variables, which are also independent of the random
variables Xi, we have

E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
α

= EEε

∣∣∣∣∣
n∑
i=1

εiXi

∣∣∣∣∣
α
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and, by Khintchine’s inequality (see [HA] for the best value of the constant in
Khintchine’s inequality)

Eε

∣∣∣∣∣
n∑
i=1

εiXi

∣∣∣∣∣
α

≤ (C2

√
α)α

(
n∑
i=1

|Xi|2
)α

2

≤ (C2

√
α)αn

α
2−1

n∑
i=1

|Xi|α.

Hence (
E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
α) 1

α

≤ C1C2

√
αn.

�

Let us recall that for every θ ∈ Sn−1, ψθ was defined like

ψθ =

∣∣∣∣∣
n∑
i=1

|gi|p−1 sgn(gi)θi

∣∣∣∣∣ .
We will also call

φθ =

(
n∑
i=1

|gi|2p−2θ2
i

) 1
2

.

Notice that since the random variables gi are symmetric with respect to the origin,
for any choice of signs εi = ±1 we have

Eψθ = E

∣∣∣∣∣
n∑
i=1

|gi|p−1 sgn(gi)θi

∣∣∣∣∣ = E

∣∣∣∣∣
n∑
i=1

|εigi|p−1 sgn(εigi)θi

∣∣∣∣∣ .
Thus, taking ε1, . . . , εn independent Bernoulli random variables, by Khintchine’s
inequality we have

Eψθ = EεEg

∣∣∣∣∣
n∑
i=1

|εigi|p−1 sgn(εigi)θi

∣∣∣∣∣ = EgEε

∣∣∣∣∣
n∑
i=1

εi|gi|p−1 sgn(gi)θi

∣∣∣∣∣
∼ E

(
n∑
i=1

|gi|2p−2θ2
i

) 1
2

= Eφθ.

The following lemma gives estimates for the value of Eψθ, independent of the di-
rection θ, in terms of the ‖θ‖1, or in terms of the value of Eψθ0 , where θ0 is the
diagonal direction.

Lemma 3.3. Let θ0 =
(

1√
n
, . . . , 1√

n

)
. Then

a) There exist absolute constants C1, C2 such that for any 1 ≤ p < ∞ and
θ ∈ Sn−1

C1

p
≤ Eψθ ≤

C2√
p
.

Furthermore, for any 1 ≤ p <∞ and θ ∈ Sn−1

C1

p
≤ Eψ2

θ ≤
C2

p
.

b) There exist two absolute constants C1, C2 such that for any 1 ≤ p <∞
C1√
n
Eψθ0‖θ‖1 ≤ Eψθ ≤

C2

p
‖θ‖1.
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c) There exists an absolute constant C such that

Eψθ ≤ CEψθ0 .

Furthermore, there exists an absolute constant c such that

σ
{
θ ∈ Sn−1 : Eψθ ≥ cEψθ0

}
≥ 1− 1

2n
.

Proof. Let us first prove a):
By Jensen’s inequality we have

Eψθ ∼ Eφθ ≥ E
n∑
i=1

|gi|p−1θ2
i = E|g|p−1 =

1

Γ
(

1
p

) =
1

p

1

Γ
(

1 + 1
p

) ∼ 1

p
.

On the other hand, by Hölder’s inequality

Eψθ ∼ Eφθ ≤

(
E

n∑
i=1

|gi|2p−2θ2
i

) 1
2

=
(
E|g|2p−2

) 1
2 =

Γ
(

2p−1
p

)
Γ
(

1
p

)


1
2

=

1

p

Γ
(

2p−1
p

)
Γ
(

1 + 1
p

)


1
2

∼ 1
√
p
.

In the same way, taking independent Bernoulli random variables and using
Khintchine’s inequality

Eψ2
θ ∼ Eφ2

θ = E|g|2p−2 =
Γ
(

2p−1
p

)
Γ
(

1
p

) =
1

p

Γ
(

2p−1
p

)
Γ
(

1 + 1
p

) ∼ 1

p
.

Let us now prove b):
Notice that if p = 1, by Khintchine’s inequality Eψθ ∼ 1 for every θ ∈ Sn−1 and

then the result follows. Assume that p > 1. On the one hand, by Lemma 3.1

Eψθ ≤ E

(
n∑
i=1

|gi|p−1 |θi|

)
≤ c2

p
‖θ‖1.

On the other hand,

Eψθ ∼ Eφθ = E‖(|gi|p−1θi)
n
i=1‖2.

Thus, applying Theorem 2.1 with Xi = |gi|p−1 and q = 2, we have that

Eψθ ∼ ‖θ‖M ,

with

M(s) = 2

∫ s

0

∫ t
− 1
p−1

0

tx2p−2 e−x
p

Γ
(

1 + 1
p

)dx+

∫ ∞
t
− 1
p−1

xp−1 e−x
p

Γ
(

1 + 1
p

)dx
 dt

=
2

pΓ
(

1 + 1
p

) ∫ s

0

(∫ t−p
∗

0

tr
p−1
p e−rdr +

∫ ∞
t−p∗

e−rdr

)
dt,
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where p∗ = p
p−1 is the dual exponent of p. Let BM be the unit ball of ‖·‖M . Taking

into account that the norm ‖ · ‖M is 1-symmetric we have that

BM ⊆
n

‖(1, . . . , 1)‖M
Bn1 .

Thus, for any θ ∈ Sn−1

‖θ‖M ≥
‖θ0‖M√

n
‖θ‖1

and so
Eψθ ≥

c1√
n
Eψθ0‖θ‖1.

Finally, we prove c):
Since for any permutation π of {1, . . . , n}

Eψθ ∼ Eφθ = E

(
n∑
k=1

|gk|2p−2θ2
k

) 1
2

= E

(
n∑
k=1

|gk|2p−2θ2
π(k)

) 1
2

we have that this expectation equals

EAveπ

(
n∑
k=1

|gk|2p−2θ2
π(k)

) 1
2

which, by Theorem 2.2 applied to ai,j = |gi|p−1θj , is equivalent to

E

 1

n

n∑
k=1

(|gi|p−1θj)
∗
k +

 1

n

n2∑
k=n+1

(|gi|2p−2θ2
j )
∗
k

 1
2

 .

Now, since by Hölder’s inequality

1

n

n∑
k=1

(|gi|p−1θj)
∗
k ≤

(
1

n

n∑
k=1

(|gi|2p−2θ2
j )
∗
k

) 1
2

we have that  1

n

n∑
k=1

(|gi|p−1θj)
∗
k +

 1

n

n2∑
k=n+1

(|gi|2p−2θ2
j )
∗
k

 1
2


≤

( 1

n

n∑
k=1

(|gi|2p−2θ2
j )
∗
k

) 1
2

+

 1

n

n2∑
k=n+1

(|gi|2p−2θ2
j )
∗
k

 1
2


≤
√

2

 1

n

n∑
i,j=1

|gi|2p−2θ2
j

 1
2

=
√

2φθ0

and taking expectation and using Khintchine’s inequality again we obtain

Eψθ ≤ c2Eψθ0 .
Besides, by Markov’s inequality for any A ≥ 0

|Bn1 |
|Bn2 |

=

∫
Sn−1

1

‖θ‖n1
dσ(θ) ≥ 1

An
σ{θ ∈ Sn−1 : ‖θ‖1 ≤ A}.
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Thus, since
(
|Bn1 |
|Bn2 |

) 1
n ≤ C√

n
, taking A = 1

2C

√
n, we obtain that

σ

{
θ ∈ Sn−1 : ‖θ‖1 ≤

1

2C

√
n

}
≤ 1

2n

and, by part b) in this lemma, there exists an absolute constant c such that

σ{θ ∈ Sn−1 : Eψθ ≥ cEψθ0} ≥ 1− 1

2n
,

which finishes the proof. �

In both parts b) and c) in Lemma 3.3 we have related Eψθ with Eψθ0 . In the
following lemma we are going to estimate the value of Eψθ0 .

Lemma 3.4. Let θ0 =
(

1√
n
, . . . , 1√

n

)
. Then, if 1 ≤ p ≤ n

Eψθ0 ∼
1
√
p

and, if p = nγ with γ > 1,

Eψθ0 ∼
√
n

p
=

1

p1− 1
2γ

.

Proof. By Lemma 3.3 Eψθ0 ≤ C√
p . Let us prove Eψθ0 ≥ c√

p . We have seen that,

by Khintchine’s inequality,

Eψθ0 ∼
1√
n
‖(|gi|p−1)ni=1‖2.

Thus, applying Theorem 2.1 with Xi = |gi|p−1 and q = 2, we have that

Eψθ0 ∼
1√
n
‖(1, . . . , 1)‖M ,

with

M(s) = 2

∫ s

0

∫ t
− 1
p−1

0

tx2p−2 e−x
p

Γ
(

1 + 1
p

)dx+

∫ ∞
t
− 1
p−1

xp−1 e−x
p

Γ
(

1 + 1
p

)dx
 dt

=
2

pΓ
(

1 + 1
p

) ∫ s

0

(∫ t−p
∗

0

tr
1
p∗ e−rdr +

∫ ∞
t−p∗

e−rdr

)
dt

=
2
(

1− 1
p

)
pΓ
(

1 + 1
p

) ∫ s

0

t

∫ t−p
∗

0

r−
1
p e−rdrdt,

where the last identity follows from integration by parts and p∗ = p
p−1 is the dual

exponent of p.
On the one hand, since

M(s) ≥ 2

pΓ
(

1 + 1
p

) ∫ s

s
2

∫ t−p
∗

0

tr
1
p∗ e−rdrdt

≥ s

pΓ
(

1 + 1
p

) ∫ s

s
2

∫ s−p
∗

0

r
1
p∗ e−rdrdt
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=
s2

2pΓ
(

1 + 1
p

) (Γ

(
2− 1

p

)
−
∫ ∞
s−p∗

r
1
p∗ e−rdr

)
,

we have that if ρ = c
√

n
p and p ≤ c2

α
2
p∗
n with α ≥ 1

M

(
1

ρ

)
≥ 1

c2nΓ
(

1 + 1
p

) (Γ

(
2− 1

p

)
−
∫ ∞
ρp∗

r
1
p∗ e−rdr

)
≥ 1

c2nΓ
(

1 + 1
p

) (Γ

(
2− 1

p

)
−
∫ ∞
α

r
1
p∗ e−rdr

)
≥ 1

c2nΓ
(

1 + 1
p

) (Γ

(
2− 1

p

)
−
∫ ∞
α

re−rdr

)
=

1

c2nΓ
(

1 + 1
p

) (Γ

(
2− 1

p

)
− (α+ 1)e−α

)

Taking α a constant big enough and then c a constant small enough we have that
if p ≤ Cn for some absolute constant C < 1,

M

 1

c
√

n
p

 ≥ 1

n

and so

‖(1, . . . , 1)‖M ≥ c
√
n

p
.

Consequently,

Eψθ0 ≥
c
√
p
.

On the other hand, since

M(s) =
2
(

1− 1
p

)
pΓ
(

1 + 1
p

) ∫ s

0

t

∫ t−p
∗

0

r−
1
p e−rdrdt

≥
2
(

1− 1
p

)
pΓ
(

1 + 1
p

) ∫ s

0

t

∫ t−p
∗

0

t
1
p−1 e−rdrdt

=
2
(

1− 1
p

)
pΓ
(

1 + 1
p

) ∫ s

0

t1+ 1
p−1

(
1− e−t

−p∗
)
dt

≥
2
(

1− 1
p

)
pΓ
(

1 + 1
p

) ∫ s

0

t1+ 1
p−1

(
1− e−s

−p∗
)
dt

=
2
(

1− 1
p

)
s2+ 1

p−1

p
(

2 + 1
p−1

)
Γ
(

1 + 1
p

) (1− e−s
−p∗
)
.
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we have that if Cn ≤ p ≤ n, ρ = α
√

n
p with α ≤ 1, there is an absolute constant c

such that

M

(
1

ρ

)
≥ cp

1
2p−2

α2+ 1
p−1n1+ 1

2p−2

(
1− e−α

p∗
)

≥ cp
1

2p−2

α2+ 1
p−1n1+ 1

2p−2

(
1− e−α

p∗
)

≥ c

αn
,

since p ∼ n. If we take α a constant small enough,

M

 1

α
√

n
p

 ≥ 1

n

and so

‖(1, . . . , 1)‖M ≥ α
√
n

p
.

Consequently,

Eψθ0 ≥
c
√
p

also if Cn ≤ p ≤ n.
By Lemma 3.3,

Eψθ0 ≤
c2
p
‖θ0‖1 =

c2
√
n

p
Consequently, if p = nγ with γ > 1,

Eψθ0 ≤
c2
√
n

p
=

c2

p1− 1
2γ

.

On the other hand, since p ≥ n, if n ≥ 2

M(s) =
2
(

1− 1
p

)
pΓ
(

1 + 1
p

) ∫ s

0

t

∫ t−p
∗

0

r−
1
p e−rdrdt

≥
2
(

1− 1
p

)
pΓ
(

1 + 1
p

) ∫ s

0

t

∫ t−p
∗

0

r−
1
p e−t

−p∗

drdt

=
2

pΓ
(

1 + 1
p

) ∫ s

0

e−t
−p∗

dt

≥ 2

pΓ
(

1 + 1
p

) ∫ s

s2
− 1
p∗
e−t

−p∗

dt

≥ 2s

pΓ
(

1 + 1
p

) (1− 2−
1
p∗
)
e−2s−p

∗

≥ 2s

pΓ
(

1 + 1
p

) (1− 2−
n−1
n

)
e−2s−p

∗

≥
√

2(
√

2− 1)s

pΓ
(

1 + 1
p

) e−2s−p
∗

.
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and then

M

(
1

s

)
≥
√

2(
√

2− 1)

ps
e−2sp

∗

.

Thus, if p = nγ and we take s = αn1−γ , with α ≤ 1

M

(
1

αn1−γ

)
≥
√

2(
√

2− 1)

n
e−2α

nγ

nγ−1 n
(1−γ)nγ
nγ−1

≥
√

2(
√

2− 1)

n
e−2α

nγ

nγ−1

≥
√

2(
√

2− 1)

n
e−2α

≥ 1

n

if we take α ≤ 1
2 log

(√
2(
√

2− 1)
)
. Consequently,

Eψθ0 ≥ cn
1
2−γ =

c
√
n

p
=

c

p1− 1
2γ

.

�

Hence, we obtain the following

Corollary 3.1. If 1 ≤ p ≤ n. Then,

σ

{
θ ∈ Sn−1 : Eψθ ∼

1
√
p

}
≥ 1− 1

2n
.

If p > n, then for every θ ∈ Sn−1

Eψθ ∼
1

p
‖θ‖1.

Proof. The first estimate is a consequence of part c) in Lemma 3.3 and Lemma 3.4.
The second estimate is a consequence of part b) in Lemma 3.3 and Lemma 3.4. �

Remark. Actually, it can be proved that for any n ∈ N and any fixed θ ∈ Sn−1,
limp→∞ pEψθ = ‖θ‖1.

Lemma 3.5. Let I ⊆ {1, . . . , n} be any set of indices and θ ∈ Sn−1. Then,

E
∣∣∑

i∈I |gi|p−1 sgn(gi)θi
∣∣

E |
∑n
i=1 |gi|p−1 sgn(gi)θi|

≤ 1

and

E
(∑

i∈I |gi|2p−2θ2
i

) 1
2

E (
∑n
i=1 |gi|2p−2θ2

i )
1
2

≤ C,

where C is an absolute constant.
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Proof. By the triangle inequality, we have that

2

∣∣∣∣∣∑
i∈I
|gi|p−1 sgn(gi)θi

∣∣∣∣∣ ≤
∣∣∣∣∣∑
i∈I
|gi|p−1 sgn(gi)θi +

∑
i∈Ic
|gi|p−1 sgn(gi)θi

∣∣∣∣∣
+

∣∣∣∣∣∑
i∈I
|gi|p−1 sgn(gi)θi −

∑
i∈Ic
|gi|p−1 sgn(gi)θi

∣∣∣∣∣ .
Since the random variables gi are symmetric, the expected value of the second term
equals the expected value of the first term and then

2E

∣∣∣∣∣∑
i∈I
|gi|p−1 sgn(gi)θi

∣∣∣∣∣ ≤ 2E

∣∣∣∣∣
n∑
i=1

|gi|p−1 sgn(gi)θi

∣∣∣∣∣ = 2Eψ,

which proves the first inequality. The second inequality is a consequence of the first
one and Khintchine’s inequality. �

4. The variance conjecture on hyperplane projections of Bnp

In this section we prove Theorem 1.1.

Proof. First of all, notice that, by Proposition 4 in [AB1], for any ξ ∈ Sn−1 ∩H we
have that if X is a random vector uniformly distributed on PH(Bnp )

E 〈|Bnp |−
1
nX, ξ〉2 ∼ L2

Bnp
∼ 1.

Thus,

E 〈X, ξ〉2 ∼ |Bnp |
2
n ∼ 1

n
2
p

and so

λ2
XE |X|2 ∼ n1− 4

p .

Now, using the probabilistic representation of X mentioned in Section 2, we have
that

Var |X|2 = E |X|4 − (E |X|2)2

=
1

Eψ
E
∣∣∣∣PH (GS

)∣∣∣∣4 ψ − 1

(Eψ)2

(
E
∣∣∣∣PH (GS

)∣∣∣∣2 ψ
)2

=
1

Eψ
E

(∣∣∣∣GS
∣∣∣∣2 −〈GS , θ

〉2
)2

ψ

− 1

(Eψ)2

(
E
∣∣∣∣GS
∣∣∣∣2 ψ − E

〈
G

S
, θ

〉2

ψ

)2

≤ 1

Eψ
E
∣∣∣∣GS
∣∣∣∣4 ψ −

(
1

Eψ
E
∣∣∣∣GS
∣∣∣∣2 ψ

)2

+
1

Eψ
E
〈
G

S
, θ

〉4

ψ + 2
1

(Eψ)2
E
∣∣∣∣GS
∣∣∣∣2 ψ E

〈
G

S
, θ

〉2

ψ

=

n∑
i=1

(
1

Eψ
E
g4
i

S4
ψ −

(
1

Eψ
E
g2
i

S2
ψ

)2
)
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+
∑
i 6=j

(
1

Eψ
E
g2
i g

2
j

S4
ψ − 1

(Eψ)2
E
g2
i

S2
ψE

g2
j

S2
ψ

)

+
1

Eψ
E
〈
G

S
, θ

〉4

ψ +
2

(Eψ)2
E
∣∣∣∣GS
∣∣∣∣2 ψ E

〈
G

S
, θ

〉2

ψ.

We are going to bound from above each one of the four summands in the last
expression. The upper bound of the first, third, and fourth term will be of the order
that would give an absolute constant in the variance conjecture. The estimate we
obtain for the second term will be the one that will cause the constant to depend
on p if p ≤ n.
4.1. Upper bound for the last term.
By the independence of G

S and S we have that for any θ ∈ Sn−1

1

Eψ
E
〈
G

S
, θ

〉2

ψ =
E
〈
G
S , θ

〉2 ∣∣∣∑n
i=1

|gi|p−1

Sp−1 sgn(gi)θi

∣∣∣
E
∣∣∣∑n

i=1
|gi|p−1

Sp−1 sgn(gi)θi

∣∣∣
=

ESp−1

ESp+1

E(
∑n
i=1 giθi)

2
∣∣∑n

i=1 |gi|p−1 sgn(gi)θi
∣∣

E |
∑n
i=1 |gi|p−1 sgn(gi)θi|

.

Taking ε1, . . . , εn independent Bernoulli random variables also independent with
respect to the gi’s we have that

ESp−1

ESp+1

E(
∑n
i=1 giθi)

2
∣∣∑n

i=1 |gi|p−1 sgn(gi)θi
∣∣

E |
∑n
i=1 |gi|p−1 sgn(gi)θi|

=
ESp−1

ESp+1

EεEg(
∑n
i=1 εigiθi)

2
∣∣∑n

i=1 |gi|p−1 sgn(gi)εiθi
∣∣

Eg |
∑n
i=1 |gi|p−1 sgn(gi)θi|

≤ ESp−1

ESp+1

Eg
(
Eε(
∑n
i=1 εigiθi)

4
) 1

2

(
Eε
∣∣∑n

i=1 |gi|p−1 sgn(gi)εiθi
∣∣2) 1

2

Eg |
∑n
i=1 |gi|p−1 sgn(gi)θi|

.

By Khintchine’s inequality, Lemma 3.1, Lemma 3.3 and Lemma 3.5

1

Eψ
E
〈
G

S
, θ

〉2

ψ ≤ C
ESp−1

ESp+1

Eg
(∑n

i=1 g
2
i θ

2
i

) (∑n
j=1 |gj |2p−2θ2

j

) 1
2

Eg
∣∣∣∑n

j=1 |gj |p−1 sgn(gj)θj

∣∣∣
=

ESp−1

ESp+1

∑n
i=1 θ

2
iEgg2

i

(∑n
j=1 |gj |2p−2θ2

j

) 1
2

Eg
∣∣∣∑n

j=1 |gj |p−1 sgn(gj)θj

∣∣∣
≤ ESp−1

ESp+1

∑n
i=1 θ

2
iEgg2

i

(
|gi|p−1|θi|+

(∑
j 6=i |gj |2p−2θ2

j

) 1
2

)
Eg
∣∣∣∑n

j=1 |gj |p−1 sgn(gj)θj

∣∣∣
=

ESp−1

ESp+1

∑n
i=1 θ

2
i

(
Eg|gi|p+1|θi|+ Egg2

i Eg
(∑

j 6=i |gj |2p−2θ2
j

) 1
2

)
Eg
∣∣∣∑n

j=1 |gj |p−1 sgn(gj)θj

∣∣∣
≤ ESp−1

ESp+1

n∑
i=1

θ2
i (C1|θi|+ C2) ≤ CESp−1

ESp+1
.
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By Lemma 3.1 we have ESp−1

ESp+1 ∼ 1

n
2
p

. Thus

1

Eψ
E
〈
G

S
, θ

〉2

ψ ≤ C

n
2
p

.

Also, as before,

1

Eψ
E
∣∣∣∣GS
∣∣∣∣2 ψ =

ESp−1

ESp+1

1

Eψ

n∑
i=1

Eg2
i ψ

≤ C

n
2
pEψ

n∑
i=1

E|gi|p+1|θi|+ Egg2
i Eg

∑
j 6=i

|gj |2p−2θ2
j

 1
2


≤ C

n
2
p

(‖θ‖1 + n)

≤ Cn1− 2
p

and so
1

(Eψ)2
E
∣∣∣∣GS
∣∣∣∣2 ψE〈GS , θ

〉2

ψ ≤ Cn1− 4
p .

4.2. Upper bound for the first and third term.
Similarly, by the independence of G

S and S, Hölder’s inequality, Khintchine’s in-
equality, Lemma 3.1 and Lemma 3.5 we have

1

Eψ
E
〈
G

S
, θ

〉4

ψ =
ESp−1

ESp+3Eψ
EgEε

(
n∑
i=1

gi sgn(gi)εiθi

)4
∣∣∣∣∣∣
n∑
j=1

|gj |p−1 sgn(gj)εjθj

∣∣∣∣∣∣
≤ ESp−1

ESp+3Eψ
Eg

Eε

(
n∑
i=1

gi sgn(gi)εiθi

)8
 1

2

Eε

∣∣∣∣∣∣
n∑
j=1

|gj |p−1 sgn(gj)εjθj

∣∣∣∣∣∣
2


1
2

∼ ESp−1

ESp+3Eψ
E

(
n∑
i=1

g2
i θ

2
i

)2
∣∣∣∣∣∣
n∑
j=1

|gj |2p−2θ2
j

∣∣∣∣∣∣
1
2

≤ ESp−1

ESp+3Eψ
E

n∑
i=1

g4
i θ

2
i

∣∣∣∣∣∣
n∑
j=1

|gj |2p−2θ2
j

∣∣∣∣∣∣
1
2

=
ESp−1

ESp+3Eψ

n∑
i=1

θ2
iEg4

i

∣∣∣∣∣∣
n∑
j=1

|gj |2p−2θ2
j

∣∣∣∣∣∣
1
2

≤ ESp−1

ESp+3Eψ

n∑
i=1

θ2
iEg4

i

|gi|p−1|θi|+

∑
j 6=i

|gj |2p−2θ2
j

 1
2


=

ESp−1

ESp+3Eψ

n∑
i=1

θ2
i

E|gi|p+3|θi|+ Eg4
i E

∑
j 6=i

|gj |2p−2θ2
j

 1
2


≤ ESp−1

ESp+3
C

n∑
i=1

θ2
i
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≤ Cn−
4
p

since, by Lemma 3.1, ESp−1

ESp+3 ∼ n−
4
p . This bounds the third term. Besides, this

estimate implies the following bound on the first term:

n∑
i=1

(
1

Eψ
E
g4
i

S4
ψ −

(
1

Eψ
E
g2
i

S2
ψ

)2
)
≤

n∑
i=1

1

Eψ
E
g4
i

S4
ψ ≤ Cn1− 4

p .

4.3. Upper bound for the second term.
It remains to bound the second term∑

i 6=j

(
1

Eψ
E
g2
i g

2
j

S4
ψ − 1

(Eψ)2
E
g2
i

S2
ψE

g2
j

S2
ψ

)
.

For any i 6= j we have

1

Eψ
E
g2
i g

2
j

S4
ψ − 1

(Eψ)2
E
g2
i

S2
ψE

g2
j

S2
ψ =

ESp−1

ESp+3

Eg2
i g

2
jψ

Eψ
−
(
ESp−1

ESp+1

)2 Eg2
i ψEg2

jψ

(Eψ)2

=
(ESp−1)2

(ESp+1)2(Eψ)2

(
(ESp+1)2

ESp−1ESp+3
Eg2

i g
2
jψEψ − Eg2

i ψEg2
jψ

)
.

By Hölder’s inequality, (ESp+1)2 ≤ ESp−1ESp+3. Then, we have

1

Eψ
E
g2
i g

2
j

S4
ψ − 1

(Eψ)2
E
g2
i

S2
ψE

g2
j

S2
ψ ≤ (ESp−1)2

(ESp+1)2(Eψ)2

(
Eg2

i g
2
jψEψ − Eg2

i ψEg2
jψ
)
.

Note that if {ḡi}ni=1 are independent copies of g, independent of {gi}ni=1, and ψ̄ =∣∣∑n
i=1 |ḡi|p−1 sgn(ḡi)θi

∣∣, we have that

Eg2
i g

2
jψEψ − Eg2

i ψEg2
jψ = Eg⊗ḡg2

i (g2
j − ḡ2

j )ψψ̄

= Eg⊗ḡ ḡ2
i (ḡ2

j − g2
j )ψψ̄.

Thus,

Eg2
i g

2
jψEψ − Eg2

i ψEg2
jψ =

1

2
Eg⊗ḡ(g2

i − ḡ2
i )(g2

j − ḡ2
j )ψψ̄

and so,∑
i 6=j

1

Eψ
E
g2
i g

2
j

S4
ψ − 1

(Eψ)2
E
g2
i

S2
ψE

g2
j

S2
ψ ≤ (ESp−1)2

2(ESp+1)2(Eψ)2
Eψψ̄

∑
i 6=j

(g2
i − ḡ2

i )(g2
j − ḡ2

j )

≤ (ESp−1)2

2(ESp+1)2(Eψ)2
Eψψ̄

(
n∑
i=1

(g2
i − ḡ2

i )

)2

∼ n−
4
p

(Eψ)2
Eψψ̄

(
n∑
i=1

(g2
i − ḡ2

i )

)2

.

Now, for any α ≥ 1, this is bounded by

≤ n−
4
p

(
Eψψ̄

(∑n
i=1(g2

i − ḡ2
i )
)2α

(Eψ)2

) 1
α

≤ n−
4
p

(
Eψ2

) 1
α

(Eψ)
2
α

E

(
n∑
i=1

(g2
i − ḡ2

i )

)4α
 1

2α

.
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By Lemma 3.3,
(Eψ2)

1
α

(Eψ)
2
α
≤ Cp 1

α and, taking α ∼ log p we have by Lemma 3.2 thatE

(
n∑
i=1

(g2
i − ḡ2

i )

)4α
 1

2α

∼ n log p

and so ∑
i6=j

(
1

Eψ
E
g2
i g

2
j

S4
ψ − 1

(Eψ)2
E
g2
i

S2
ψE

g2
j

S2
ψ

)
≤ Cn1− 4

p log(1 + p).

Besides, by Corollary 3.1, if 1 ≤ p ≤ n,
(Eψ2)

1
α

(Eψ)
2
α
≤ C for a set of directions of

measure greater than 1− 1
2n . Taking α = 2 when θ belongs to this set we obtain∑

i6=j

(
1

Eψ
E
g2
i g

2
j

S4
ψ − 1

(Eψ)2
E
g2
i

S2
ψE

g2
j

S2
ψ

)
≤ Cn1− 4

p .

This finishes the proof in the case p ≤ n.
In the case that p > n we take into account that, since the random variables gi

are independent and identically distributed

Eψψ̄

(
n∑
i=1

(g2
i − ḡ2

i )

)2

= Eψψ̄

(
n∑
i=1

(g2
i − Eg2

i ) +

n∑
i=1

(Eḡ2
i − ḡ2

i )

)2

≤
√

2Eψψ̄

( n∑
i=1

(g2
i − Eg2

i )

)2

+

(
n∑
i=1

(ḡ2
i − Eḡ2

i )

)2


= 2
√

2EψEψ

(
n∑
i=1

(g2
i − Eg2

i )

)2

≤ 2
√

2EψE
n∑
j=1

|gj |p−1|θj |

(
n∑
i=1

(g2
i − Eg2

i )

)2

= 2
√

2‖θ‖1EψE|g1|p−1

(
n∑
i=1

(g2
i − Eg2

i )

)2

= 2
√

2‖θ‖1EψE|g1|p−1
n∑
i=1

(g2
i − Eg2

i )2

≤ Cn‖θ‖1Eψ
p

.

Since by part b) in Lemma 3.3

Eψθ ≥
c1√
n
Eψθ0‖θ‖1,

we have that

n−
4
p

(Eψ)2
Eψψ̄

(
n∑
i=1

(g2
i − ḡ2

i )

)2

≤ C
√
n

pEψθ0
n1− 4

p

and, since p ≥ n, by Lemma 3.4 Eψθ0 ∼
√
n
p and we obtain the result. �
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5. Hyperplane projections of isotropic random vectors and Steiner
symmetrization

In this section we will show how the variance conjecture for an isotropic log-
concave random vector relates to the variance conjecture for its hyperplane projec-
tions or for its Steiner symmetrizations (when the vector is uniformly distributed
on an isotropic body).

Proposition 5.1. Let µ be a log-concave probability on Rn and X a random vector
distributed according to µ. Then for any linear subspace E∣∣∣√Var|X|2 −

√
Var|PEX|2

∣∣∣ ≤√Var|PE⊥X|2.

Proof. For any linear subspace E,

|X|2 = |PE(X)|2 + |PE⊥(X)|2.

Thus,

Var|X|2 = Var|PEX|2 + Var|PE⊥X|2
+ 2

(
E|PEX|2|PE⊥X|2 − E|PEX|2E|PE⊥X|2

)
= Var|PEX|2 + Var|PE⊥X|2
+ 2

(
E|PEX|2(|X|2 − |PEX|2)− E|PEX|2E(|X|2 − |PEX|2)

)
= Var|PEX|2 + Var|PE⊥X|2
+ 2E|PEX|2(|X|2 − E|X|2)− 2Var|PEX|2
= Var|PE⊥X|2 −Var|PEX|2
+ 2E(|PEX|2 − E|PEX|2)(|X|2 − E|X|2)
≤ Var|PE⊥X|2 −Var|PEX|2

+ 2
√

Var|PEX|2
√

Var|X|2.

Consequently,

Var|X|2 − 2
√

Var|PEX|2
√

Var|X|2 − Var|PE⊥X|2 + Var|PEX|2 ≤ 0.

Since the roots of the polyomial

p(x) = x2 − 2
√

Var|PEX|2x−Var|PE⊥X|2 + Var|PEX|2

are √
Var|PEX|2 ±

√
Var|PE⊥X|2,

we obtain the result. �

As a consequence, we have the following

Theorem 5.1. Let X be an isotropic log-concave random vector. Then the follow-
ing are equivalent

• There exists a constant C1 such that

Var |X|2 ≤ C1n.

• There exists a constant C2 such that

Var |PEX|2 ≤ C2(n− 1)

for some hyperplane E.
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• There exists a constant C3 such that

Var |PEX|2 ≤ C3(n− 1)

for every hyperplane E,

where

C2 ≤ C3 ≤ 4

(
C1 +

C

n

)
and C1 ≤ 2

(
C2 +

C

n

)
,

with C an absolute constant.

Proof. Let E = θ⊥ be a hyperplane and X an isotropic log-concave random vec-
tor. Since X is isotropic, also PEX is isotropic. Thus, if X verifies the variance
conjecture with constant C1 then, for every hyperplane E = θ⊥√

Var|PEX|2 ≤
√

Var|X|2 +
√

Var〈X, θ〉2
≤

√
C1n+

√
E〈X, θ〉4

≤
√

2
√
C1n+ E〈X, θ〉4.

By Borell’s inequality√
Var|PEX|2 ≤

√
2
√
C1n+ C ′ =

√
2

√
C1 +

C

n

√
n.

Thus, there exists an absolute constant C such that

Var|PEX|2 ≤ 2

(
C1 +

C

n

)
n ≤ 4

(
C1 +

C

n

)
(n− 1).

In the same way, if there exists a hyperplane E = θ⊥ such that Var |PEX|2 ≤
C2(n− 1) , then √

Var|X|2 ≤
√

Var|PEX|2 +
√

Var〈X, θ〉2
≤

√
C2(n− 1) +

√
E〈X, θ〉4

≤
√

2
√
C2(n− 1) + E〈X, θ〉4

and, by Borell’s inequality,√
Var|X|2 ≤

√
2
√
C2n+ C =

√
2

√
C2 +

C

n

√
n.

Thus, there exists an absolute constant C such that

Var|X|2 ≤ 2

(
C2 +

C

n

)
n.

�

Now we will prove Theorem 1.2. It will be a consequence of the following

Proposition 5.2. Let K be an isotropic convex body, θ ∈ Sn−1 and Sθ(K) its
Steiner symmetrization with respect to the hyperplane H = θ⊥. Let Y be a random
vector uniformly distributed on Sθ(K) and X a random vector uniformly distributed
on K. Then there exists an absolute constant C such that∣∣Var|Y |2 −Var|X|2

∣∣ ≤ CnL4
K .
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Proof. Without loss of generality we can assume that θ = en. We have that

Var|Y |2 =

n∑
i=1

(
E〈Y, ei〉4 − (E〈Y, ei〉2)2

)
+

∑
i 6=j

(
E〈Y, ei〉2〈Y, ej〉2 − E〈Y, ei〉2E〈Y, ej〉2

)
.

Notice that if i 6= n

E〈Y, ei〉4 =

∫
PH(K)

〈y, ei〉4|Sθ(K) ∩ (y + 〈en〉)|dy

=

∫
PH(K)

〈y, ei〉4|K ∩ (y + 〈en〉)|dy = E〈X, ei〉4.

If i = n and for every y ∈ PH(K) we have that K ∩ (y + 〈en〉) is the segment
[a(y), b(y)]en, which has length 2l(y)

E〈Y, en〉4 =

∫
PH(K)

∫ l(y)

−l(y)

t4dtdy ≤
∫
PH(K)

∫ b(y)

a(y)

t4dtdy

= E〈X, en〉4.
In the same way, if i 6= n

E〈Y, ei〉2 = E〈X, ei〉2

and if i = n

E〈Y, en〉2 ≤ E〈X, en〉2.
Besides, if i, j 6= n

E〈Y, ei〉2〈Y, ej〉2 = E〈X, ei〉2〈X, ej〉2

and if i 6= n

E〈Y, ei〉2〈Y, en〉2 =

∫
PH(K)

〈y, ei〉2
∫ l(y)

−l(y)

t2dtdy ≤
∫
PH(K)

〈y, ei〉2
∫ b(y)

a(y)

t2dtdy

= E〈X, ei〉2〈X, en〉2.
Thus,

Var|Y |2 = Var|X|2 + E〈Y, en〉4 − E〈X, en〉4
+ (E〈X, en〉2)2 − (E〈Y, ei〉2)2

+ 2

n−1∑
i=1

E〈Y, ei〉2〈Y, en〉2 − E〈X, ei〉2〈X, en〉2

+ 2

n−1∑
i=1

E〈X, ei〉2(E〈X, en〉2 − E〈Y, en〉2).

Consequently

Var|Y |2 ≤ Var|X|2
+ (E〈X, en〉2)2 − (E〈Y, ei〉2)2

+ 2

n−1∑
i=1

E〈X, ei〉2(E〈X, en〉2 − E〈Y, en〉2).

Now, if K is isotropic

Var|Y |2 ≤ Var|X|2
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+ L4
K − (E〈Y, ei〉2)2

+ 2(n− 1)L2
K(L2

K − E〈Y, en〉2)
≤ Var|X|2 + (2n− 1)L4

K .

On the other hand, by Hölder’s inequality and Borell’s lemma

Var|Y |2 ≥ Var|X|2 − E〈X, en〉4

− 2

n−1∑
i=1

E〈X, ei〉2〈X, en〉2

≥ Var|X|2 − E〈X, en〉4

− 2

n−1∑
i=1

E(〈X, ei〉4)
1
2E(〈X, en〉4)

1
2

≥ Var|X|2 − C(E〈X, en〉2)2

− C

n−1∑
i=1

E〈X, ei〉2E〈X, en〉2

Thus, if K is isotropic
Var|Y |2 ≥ Var|X|2 − CnL4

K .

�

As a consequence, we have Theorem 1.2:

Proof of Theorem 1.2. Let K be an isotropic convex body and let Yθ be a random
vector on Sθ(K). Then

λ2
Yθ

= L2
K

and
E|Yθ|2 = (n− 1)L2

K + E〈Yθ, θ〉2.
Thus (n− 1)L2

K ≤ E|Yθ|2 ≤ nL2
K and so, by the previous proposition, if X verifies

the variance conjecture with constant C1 then for any θ ∈ Sn−1

Var |Yθ|2 ≤ Var |X|2 + CnL4
K ≤ (C1 + C)nL4

K ≤ 2(C1 + C)λ2
Yθ
E|Y |2

and if for some θ ∈ Sn−1 Yθ verifies the variance conjecture with constant C2 then

Var |X|2 ≤ Var |Yθ|2 + CnL4
K ≤ (C2 + C)nL4

K = (C2 + C)λ2
XE|X|2.

�
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