An extension of Milman's reverse Brunn-Minkowski inequality

by

Jesús Bastero $^{*},$ Julio Bernués * and Ana Peña *

Departamento de Matemáticas. Facultad de Ciencias Universidad de Zaragoza 50009-Zaragoza (Spain)

0. Introduction

The classical Brunn-Minkowski inequality states that for $A_1, A_2 \subset \mathbb{R}^n$ compact,

$$|A_1 + A_2|^{1/n} \ge |A_1|^{1/n} + |A_2|^{1/n} \tag{1}$$

where $|\cdot|$ denotes the Lebesgue measure on \mathbb{R}^n . Brunn [**Br**] gave the first proof of this inequality for A_1, A_2 compact convex sets, followed by an analytical proof by Minkowski [**Min**]. The inequality (1) for compact sets, not necessarily convex, was first proved by Lusternik [**Lu**]. A very simple proof of it can be found in [**Pi 1**], Ch. 1.

It is easy to see that one cannot expect the reverse inequality to hold at all, even if it is perturbed by a fixed constant and we restrict ourselves to balls (i.e. convex symmetric compact sets with the origin as an interior point). Take for instance $A_1 = \{(x_1 \dots x_n) \in \mathbb{R}^n \mid |x_1| \le \varepsilon, |x_i| \le 1, 2 \le i \le n\}$ and $A_2 = \{(x_1 \dots x_n) \in \mathbb{R}^n \mid |x_n| \le \varepsilon, |x_i| \le 1, 1 \le i \le n-1\}$.

In 1986 V. Milman [Mil 1] discovered that if B_1 and B_2 are balls there is always a relative position of B_1 and B_2 for which a perturbed inverse of (1) holds. More precisely: "There exists a constant C > 0such that for all $n \in \mathbb{N}$ and any balls $B_1, B_2 \subset \mathbb{R}^n$ we can find a linear transformation $u: \mathbb{R}^n \to \mathbb{R}^n$ with $|\det(u)| = 1$ and

$$|u(B_1) + B_2|^{1/n} \le C(|B_1|^{1/n} + |B_2|^{1/n})$$
"

The nature of this reverse Brunn-Minkowski inequality is absolutely different from others (say reverse Blaschke-Santaló inequality, etc.). Brunn-Minkowski inequality is an isoperimetric inequality, (in \mathbb{R}^n it is its first and most important consequence till now) and there is no inverse to isoperimetric inequalities. So, it was a new idea that in the class of affine images of convex bodies there is some kind of inverse.

The result proved by Milman used hard technical tools (see [Mil 1]). Pisier in [Pi 2] gave a new proof by using interpolation and entropy estimates. Milman in [Mil 2] gave another proof by using the "convex surgery" and achieving also some entropy estimates.

The aim of this paper is to extend this Milman's result to a larger class of sets. Note that simple examples show that some conditions on a class of sets are clearly necessary.

For $B \subset \mathbb{R}^n$ body (i.e. compact, with non empty interior), consider $B_1 = B - x_0$, where x_0 is an interior point. If we denote by $N(B_1) = \bigcap_{|a| \ge 1} aB_1$ the balanced kernel of B_1 , it is clear that $N(B_1)$ is a balanced compact neighbourhood of the origin, so there exists c > 0 such that $B_1 + B_1 \subset cN(B_1)$. The Aoki-Rolewicz theorem (see [**Ro**], [**K-P-R**]) implies that there is $0 , namely <math>p = \log_2^{-1}(c)$, such that $B_1 \subset \overline{B} \subset 2^{1/p}B_1$, where \overline{B} is the unit ball of some *p*-norm. This observation will allow us to work in a *p*-convex environment.

The above construction allows us to define the following parameter. For B a body let p(B), $0 < p(B) \le 1$, be the supremum of the p for which there exist a measure preserving affine transformation

^{*} Partially supported by Grant DGICYT PS 90-0120

AMS Class.: 46B20, . Key words: p-convexity, entropy

of B, T(B), and a *p*-norm with unit ball \overline{B} verifying $T(B) \subset \overline{B}$ and $|\overline{B}| \leq |8^{1/p}B|$, (by suitably adapting the results appearing in [Mil 2], it is clear that $p(B) \geq p$ for any *p*-convex body B).

Our main theorem is,

Theorem 1. Let $0 . There exists <math>C = C(p) \ge 1$ such that for all $n \in \mathbb{N}$ and all $A_1, A_2 \subset \mathbb{R}^n$ bodies such that $p(A_1), p(A_2) \ge p$, there exists an affine transformation $T(x) = u(x) + x_0$ with $x_0 \in \mathbb{R}^n, u: \mathbb{R}^n \to \mathbb{R}^n$ linear and $|\det(u)| = 1$ such that

$$|T(A_1) + A_2|^{1/n} \le C(|A_1|^{1/n} + |A_2|^{1/n})$$

In particular, for the class of p-balls the constant C is universal (depending only on p).

We prove this theorem in section 2. The key is to estimate certain entropy numbers. We will use the convexity of quasi-normed spaces of Rademacher type r > 1, as well as interpolation results and iteration procedures.

We want to thank Gilles Pisier for a useful conversation during the preparation of this paper.

1. Notation and background

Throughout the paper X, Y, Z will denote finite dimensional real vector spaces. A quasi-norm on a real vector space X is a map $\|\cdot\|: X \to \mathbb{R}^+$ such that

- i) $||x|| > 0 \ \forall \ x \neq 0.$
- ii) $||tx|| = |t| ||x|| \forall t \in \mathbb{R}, x \in X.$
- iii) $\exists C \ge 1$ such that $||x + y|| \le C(||x|| + ||y||) \ \forall x, y \in X$

If iii) is substituted by

iii') $||x + y||^p \le ||x||^p + ||y||^p$ for $x, y \in X$ and some 0 ,

 $\|\cdot\|$ is called a *p*-norm on *X*. Denote by B_X the unit ball of a quasi-normed or a *p*-normed space.

The above observations concerning the *p*-convexification of our problem can be restated using *p*-norm and quasi-norm notation. Recall that any compact balanced set with 0 in its interior is the unit ball of a quasi-norm.

By the concavity of the function t^p , any *p*-norm is a quasi-norm with $C = 2^{1/p-1}$. Conversely, by the Aoki-Rolewicz theorem, for any quasi-norm with constant C there exists p, namely $p = \log_2^{-1}(2C)$, and a *p*-norm $|\cdot|$ such that $|x| \leq ||x|| \leq 4^{1/p} |x|, \forall x \in X$.

A set $K \subset X$ is called *p*-convex if $\lambda x + \mu y$, whenever $x, y \in K$, $\lambda, \mu \geq 0$, $\lambda^p + \mu^p = 1$. Given $K \subseteq X$, the *p*-convex hull (or *p*-convex envelope) of K is the intersection of all *p*-convex sets that contain K. It is denoted by *p*-conv (K). The closed unit ball of a *p*-normed space $(X, \|\cdot\|)$ will simply be called a *p*-ball. Any symmetric compact *p*-convex set in X with the origin as an interior point is the *p*-ball associated to some *p*-norm.

We say that a quasi-normed space $(X, \|\cdot\|)$ is of (Rademacher) type $q, 0 < q \leq 2$ if for some constant $T_q(X) > 0$ we have

$$\frac{1}{2^n} \sum_{\varepsilon_i = \pm 1} \|\sum_{i=1}^n \varepsilon_i x_i\| \le T_q(X) (\sum_{i=1}^n \|x_i\|^q)^{1/q}, \quad \forall x_i \in X, 1 \le i \le n, \ \forall n \in \mathbb{N}$$

Kalton, **[Ka]**, proved that any quasi-normed space $(X, \|\cdot\|)$ of type q > 1 is convex. That is, the quasi-norm $\|\cdot\|$ is equivalent to a norm and moreover, the equivalence constant depends only on $T_q(X)$, (for a more precise statement and proof of this fact see **[K-S]**).

Given $f, g: \mathbb{N} \to \mathbb{R}^+$ we write $f \sim g$ if there exists a constant C > 0 such that $C^{-1}f(n) \leq g(n) \leq Cf(n), \forall n \in \mathbb{N}$. Numerical constants will always be denoted by C (or C_p if it depends only on p) although their value may change from line to line.

Let $u: X \to Y$ be a linear map between two quasi-normed spaces and $k \ge 1$. Recall the definition of the following numbers:

Kolmogorov numbers: $d_k(u) = \inf\{||Q_S \circ u|| | S \subset Y \text{ subspace and } \dim(S) < k\}$ where $Q_S: Y \to Y/S$ is the quotient map.

Covering numbers: For $A_1, A_2 \subset X$, $N(A_1, A_2) = \inf\{N \in \mathbb{N} \mid \exists x_1 \dots x_N \in X \text{ such that } A_1 \subset \bigcup_{1 \le i \le N} (x_i + A_2)\}.$

Entropy numbers: $e_k(u) = \inf\{\varepsilon > 0 \mid N(u(B_X), \varepsilon B_Y) \le 2^{k-1}\}$

The sequences $\{d_k(u)\}, \{e_k(u)\}\$ are non-increasing and satisfy $d_1(u) = e_1(u) = ||u||$. If $\dim(X) = \dim(Y) = n$ then $d_k(u) = 0$ for all k > n. Denote s_k either d_k or e_k . For all linear operators $u: X \to Y$, $v: Y \to Z$ we have $s_k(v \circ u) = ||u|| s_k(v)$ and $s_k(v \circ u) = ||v|| s_k(u), \forall k \in \mathbb{N}$ (called the ideal property of s_k) and

$$s_{k+n-1}(v \circ u) \leq s_k(v)s_n(u) \quad \forall \ k, n \in \mathbb{N}$$

The following two lemmas contain useful information about these numbers. The first one extends to the *p*-convex case its convex analogue due to Carl ([**Ca**]). Its proof mimics the ones of Theorem 5.1 and 5.2 in [**Pi 1**] (see also [**T**]) with minor changes. In particular we identify X as a quotient of $\ell_p(I)$, for some I, and apply the metric lifting property of $\ell_p(I)$ in the class of *p*-normed spaces (see Proposition C.3.6 in [**Pie**]). The second one contains easy facts about N(A, B) and its proof is similar to the one of Lemma 7.5. in [**Pi 1**].

Lemma 1. For all $\alpha > 0$ and $0 there exists a constant <math>C_{\alpha,p} > 0$ such that for all linear map $u: X \to Y, X, Y$ p-normed spaces and for all $n \in \mathbb{N}$ we have

$$\sup_{k \le n} k^{\alpha} e_k(u) \le C_{\alpha,p} \sup_{k \le n} k^{\alpha} d_k(u)$$

Lemma 2.

- i) For all $A_1, A_2, A_3 \subset X$, $N(A_1, A_3) \leq N(A_1, A_2)N(A_2, A_3)$
- ii) For all t > 0 and $0 there is <math>C_{p,t} > 0$ such that for all X p-normed space of dimension n, $N(B_X, tB_X) \le C_{p,t}^n$.
- iii) For any $A_1, A_2, K \subset \mathbb{R}^n$, $|A_1 + K| \le N(A_1, A_2)|A_2 + K|$.

iv) Let B_1, B_2 be p-balls in \mathbb{R}^n for some p and $B_2 \subset B_1$; then $\frac{|B_1|}{|B_2|} \sim N(B_1, B_2)$.

For any $B \subseteq \mathbb{R}^n$ *p*-ball the polar set of *B* is defined as

$$B^{\circ} := \{ x \in \mathbb{R}^n \mid \langle x, y \rangle \le 1, \ \forall \, y \in B \}$$

where $\langle \cdot, \cdot \rangle$ denotes the standard scalar product on \mathbb{R}^n . Given B, D *p*-balls in \mathbb{R}^n we define the following two numbers:

$$s(B) := (|B| \cdot |B^{\circ}|)^{1/n}$$

and

$$M(B,D) := \left(\frac{|B+D|}{|B\cap D|} \cdot \frac{|B^{\circ} + D^{\circ}|}{|B^{\circ} \cap D^{\circ}|}\right)^{1/n}$$

Observe that for any linear isomorphism $u: \mathbb{R}^n \to \mathbb{R}^n$ we have s(u(B)) = s(B) and

$$M(u(B), u(D)) = M(B, D).$$

Recall that $s(B_{\ell_p^n}) \sim n^{-1/p} \sim s(B_{\ell_2^n})^{1/p}, 0 ([$ **Pi 1**] pg. 11).

The following estimates on these numbers are known:

- a) [Sa]. For every symmetric convex body $B \subset \mathbb{R}^n$, $s(B) \leq s(B_{\ell_2^n})$ with equality only if B is an ellipsoid. (Blaschke-Santaló's inequality).
- b) [**B-M**]. There exists a numerical constant C > 0 such that for any $n \in \mathbb{N}$ and any symmetric convex body $B \subset \mathbb{R}^n$, $s(B) \geq Cs(B_{\ell_n^n})$.
- c) [Mil 1]. There exists a numerical constant C > 0 such that for any $n \in \mathbb{N}$ and any symmetric convex body $B \subset \mathbb{R}^n$, there is an ellipsoid (called Milman ellipsoid) $D \subset \mathbb{R}^n$ such that $M(B,D) \leq C,$ (Milman ellipsoid theorem).

2. Entropy estimates and reverse Brunn-Minkowski inequality

We first introduce some useful notation: Let $B_1, B_2 \subset \mathbb{R}^n$ be two *p*-balls and $u: \mathbb{R}^n \to \mathbb{R}^n$ a linear map. We denote $u: B_1 \to B_2$ the operator between *p*-normed spaces $u: (\mathbb{R}^n, \|\cdot\|_{B_1}) \to (\mathbb{R}^n, \|\cdot\|_{B_2})$ where $\|\cdot\|_{B_i}$ is the *p*-norm on \mathbb{R}^n whose unit ball is B_i .

Proof of Theorem 1:

Let A_1, A_2 be two bodies in \mathbb{R}^n such that $p(A_1), p(A_2) \ge p$. It's clear from the definition that there exist two \bar{p} -balls, B_1, B_2 , (for instance, $\bar{p} = p/2$) and two measure preserving affine transformations T_1, T_2 , verifying

$$|T_2^{-1}T_1(A_1) + A_2| \le |B_1 + B_2|$$

and

$$|B_1|^{1/n} + |B_2|^{1/n} \le C_p \left(|A_1|^{1/n} + |A_2|^{1/n} \right).$$

So, we only have to prove the theorem for p-balls.

In the convex case a way to obtain the reverse Brunn-Minkowski inequality is to prove that, for any symmetric convex body B, there exists an ellipsoid D verifying |B| = |D| and

$$|B + \Delta|^{1/n} \le C|D + \Delta|^{1/n} \tag{2}$$

for any, say compact, subset $\Delta \subseteq \mathbb{R}^n$ (C is an universal constant independent of B and n).

Indeed, let B_1, B_2 be two balls in \mathbb{R}^n . Suppose w.l.o.g. that D_i , the ellipsoids associated to B_i satisfy $u_2 D_i = \alpha_i B_{\ell_2^n}$, where u_i are linear mappings with $|\det u_i| = 1$ and $|B_i|^{1/n} = \alpha_i |B_{\ell_2^n}|^{1/n}$. Then

$$|u_1B_1 + u_2B_2|^{1/n} \le C^2 |u_1D_1 + u_2D_2|^{1/n}$$

= $C^2(\alpha_1 + \alpha_2)|B_{\ell_2^n}|^{1/n} = C^2(|B_1|^{1/n} + |B_2|^{1/n})$

In view of the preceding comments and of straightforward computations deduced from Lemma 2, in order to obtain (2) for p-balls it is sufficient to associate an ellipsoid D to each p-ball $B \subset \mathbb{R}^n$ in such a way that the corresponding covering numbers verify $N(B, D), N(D, B) \leq C^n$ for some constant C depending only on p.

It is important to remark now the fact that, what we deduce from covering numbers estimate is that the ellipsoid D associated to B actually verifies the stronger assertion

$$C^{-1}|B + \Delta|^{1/n} \le |D + \Delta|^{1/n} \le C|B + \Delta|^{1/n}$$

for any compact set Δ in \mathbb{R}^n , with constant depending only on p. Furthermore, the role of the ellipsoid can be played by any fixed p-ball in a "spetial position".

Denote by \hat{B} the convex hull of B.

By definition of e_n , if $e_n(id: B \to D) \leq \lambda$ then $N(B, 2\lambda D) \leq 2^{n-1}$ and by Lemma 2-ii), $N(B, D) \leq \lambda^n$. (Of course, the same can be done with N(D, B)). Therefore our problem reduces to estimating entropy numbers. What we are going to prove is really a stronger result than we need, in the line of Theorem 7.13 of [**Pi 2**].

Lemma 3. Given $\alpha > 1/p - 1/2$, there exists a constant $C = C(\alpha, p)$ such that, for any $n \in \mathbb{N}$ and for any *p*-ball $B \in \mathbb{R}^n$ we can find an ellipsoid $D \in \mathbb{R}^n$ such that

$$d_k(D \to B) + e_k(B \to D) \le C\left(\frac{n}{k}\right)^{\alpha}$$

for every $1 \leq k \leq n$.

Proof of the Lemma. From Theorem 7.13 of [Pi 2] we can easily deduce the following fact: There exists a constant $C(\alpha) > 0$ such that for any $1 \le k \le n, n \in \mathbb{N}$ and any ball $\hat{B} \subset \mathbb{R}^n$, there is ellipsoid $D_0 \subset \mathbb{R}^n$ such that the identity operator $id: \mathbb{R}^n \to \mathbb{R}^n$ verifies

$$d_k(id: D_0 \to \hat{B}) \le C(\alpha) \left(\frac{n}{k}\right)^{\alpha}$$
 and $e_k(id: \hat{B} \to D_0) \le C(\alpha) \left(\frac{n}{k}\right)^{\alpha}$ (3)

For simplicity, since we are always going to deal with the identity operator, we will denote $id: B_1 \to B_2$ by $B_1 \to B_2$.

Let D_0 be the ellipsoid associated to \hat{B} in (3). It is well known [**Pe**], [**G-K**] that $B \subseteq \hat{B} \subseteq n^{1/p-1}B$. This means $||B \to \hat{B}|| \leq 1$ and $||\hat{B} \to B|| \leq n^{1/p-1}$. Now, (3) and the ideal property of d_k and e_k imply

$$d_k(D_0 \to B) \le C(\alpha) n^{1/p-1} \left(\frac{n}{k}\right)^{\alpha}$$
 and $e_k(B \to D_0) \le C(\alpha) \left(\frac{n}{k}\right)^{\alpha} \quad \forall \ k \le n$

This let us to introduce the constant C_n as the infimum of the constants C > 0 for which the conclusion of lemma 3 is true for all *p*-ball in \mathbb{R}^n . Trivially $C_n \leq C(\alpha) (1 + n^{1/p-1})$. Let D_1 be an almost optimal ellipsoid such that

$$d_k(D_1 \to B) \le 2C_n \left(\frac{n}{k}\right)^{\alpha}$$

$$e_k(B \to D_1) \le 2C_n \left(\frac{n}{k}\right)^{\alpha}$$
(4)

for every $1 \le k \le n$.

Use the real interpolation method with parameters θ , 2 to interpolate the couple $id: B \to B$ and $id: D_1 \to B$. It is straightforward from its definition that for $B_{\theta} := (B, D_1)_{\theta,2}$, we have

$$d_k(B_\theta \to B) \le ||B \to B||^{1-\theta} (d_k(D_1 \to B))^\theta \quad \forall \ k \le n$$

and therefore,

$$d_k(B_\theta \to B) \le \left(2C_n \left(\frac{n}{k}\right)^{\alpha}\right)^{\theta} \qquad \forall \ k \le n$$

Write $\lambda = 4C_n \left(\frac{n}{k}\right)^{\alpha}$. By definition of the entropy numbers, there exist $x_i \in \mathbb{R}^n$ such that $B \subset \bigcup_{i=1}^{2^{k-1}} x_i + 2\lambda D_1$. But by perturbing λ with an absolute constant we can suppose w.l.o.g. that $x_i \in B$. For all $z \in B$, there exists $x_i \in B$ such that $||z - x_i||_{D_0} \leq 2\lambda$. Also by *p*-convexity, $||z - x_i||_B \leq 2^{1/p}$.

A general result (see [**B-L**] Ch. 3.) assures the existence of a constant $C_p > 0$ such that

$$||x||_{B_{\theta}} \le C_p ||x||_B^{1-\theta} ||x||_{D_1}^{\theta}.$$

Therefore, for all $z \in B$, there exists $x_i \in B$ such that $||z - x_i||_{B_\theta} \leq C_p \lambda^{\theta}$ which means

$$e_k(B \to B_\theta) \le C_p \left(2C_n \left(\frac{n}{k}\right)^\alpha\right)^\theta.$$

Since $\alpha > 1/p - 1/2$, then we can pick $\theta \in (0,1)$ such that $\frac{2(1-p)}{2-p} < \theta < \min\{1, 1-1/2\alpha\}$. Then B_{θ} has Rademacher type strictly bigger than 1 because $\frac{1-\theta}{p} + \frac{\theta}{2} < 1$.

By Kalton's result quoted before, we can suppose that B_{θ} is a ball and therefore we can apply to it (3) for $\gamma = \alpha(1-\theta) > 1/2$ and assure the existence of another ellipsoid D_2 such that

$$d_k(D_2 \to B_\theta) \le C(\gamma) \left(\frac{n}{k}\right)^{\gamma}$$
 and $e_k(B_\theta \to D_2) \le C(\gamma) \left(\frac{n}{k}\right)^{\gamma}$ and $\forall k \le n$

Recall that $d_{2k-1}(D_2 \to B) \leq d_k(D_2 \to B_\theta)d_k(B_\theta \to B)$ and the same for the e_k 's. Thanks to the monotonicity of the numbers s_k we can use the what is known about s_{2k-1} for all s_k . Using the estimates obtained above we get $\forall k \leq n$,

$$d_k(D_2 \to B) \le C(p,\alpha) 2^{\theta} C_n^{\theta} \left(\frac{n}{k}\right)^{\gamma+\alpha\theta}$$
 and $e_k(B \to D_2) \le C(p,\alpha) 2^{\theta} C_n^{\theta} \left(\frac{n}{k}\right)^{\gamma+\alpha\theta}$.

Hence by the election of γ and by minimality we obtain $C_n^{1-\theta} \leq C(p, \alpha) 2^{\theta}$, and the conclusion of the lemma holds.

The theorem follows now from the estimate we achieved in Lemma 3 and by Lemma 1. Indeed, given any $\alpha > 1/p - 1/2$, if D is the ellipsoid associated to B by Lemma 3, we have

$$n^{\alpha}e_{n}(D \to B) \leq \sup_{k \leq n} k^{\alpha}e_{k}(D \to B) \leq C(\alpha, p) \sup_{k \leq n} k^{\alpha}d_{k}(D \to B) \leq C(\alpha, p) \sup_{k \leq n} k^{\alpha}\frac{n^{\alpha}}{k^{\alpha}}$$
$$= C(\alpha, p)n^{\alpha}$$

and so, $e_n(D \to B) \leq C(\alpha, p)$. On the other hand just take k = n in Lemma 3 and so, $e_n(B \to D) \leq C(\alpha, p)$.

Finally observe that since the constant $C(\alpha, p)$ depends only on p and α and we can take any $\alpha > 1/p - 1/2$ the thesis of the theorem as stated inmediately follows.

3. Concluding remarks

We conclude this note by stating the corresponding versions of a) Blaschke-Santaló, b) reverse Blaschke-Santaló and c) Milman ellipsoid theorem, cited in section 1, in the context of p-normed spaces.

Proposition 1. Let $0 . There exists a numerical constant <math>C_p > 0$ such that for every *p*-ball $B \subseteq \mathbb{R}^n$,

$$C_p(s(B_{\ell_2^n}))^{1/p} \le s(B) \le s(B_{\ell_2^n})$$

and in the second inequality, equality holds if only if B is an ellipsoid

Proof: Denote by \hat{B} the convex envelope of B. Since $\hat{B}^{\circ} = B^{\circ}$ we have $s(B) \leq s(\hat{B}) \leq s(B_{\ell_2^n})$. If $s(B) = s(B_{\ell_2^n})$, then \hat{B} is an ellipsoid. We will show that $B = \hat{B}$. Every x in the boundary of \hat{B} can be written as $x = \sum \lambda_i x_i, x_i \in B, \sum \lambda_i = 1$; but since \hat{B} is an ellipsoid, x is an extreme point of \hat{B} and so $x = x_i$ for some i that is $x \in B$. This shows $B = \hat{B}$ and we are done.

For the first inequality, $B \subseteq \hat{B} \subseteq n^{1/p-1}B$ easily implies $\left(\frac{|\hat{B}|}{|B|}\right)^{1/n} \leq n^{1/p-1}$ and so,

$$s(B) = (|B| \cdot |B^{\circ}|)^{1/n} = (|B| \cdot |\hat{B}^{\circ}|)^{1/n} = \left(\frac{|B|}{|\hat{B}|}\right)^{1/n} (|\hat{B}| \cdot |B^{\circ}|)^{1/n} \ge \frac{s(\hat{B})}{n^{1/p-1}}$$
$$\ge \frac{Cs(B_{\ell_2^n})}{n^{1/p-1}} = Cn^{-1/p} = C_p \left(s(B_{\ell_2^n})\right)^{1/p}$$
////

The left inequality above is sharp since $s(B_{\ell_p^n}) = C_p(s(B_{\ell_2^n}))^{1/p}$. The right inequality is also sharp since every ball is a *p*-ball for every 0 . And it is sharp even if we restrict ourselves tothe class of*p*-balls which are not*q*-convex for any <math>q > p, as it is showed by the following example: Let $\varepsilon > 0$ and C_{ε} be a relatively open cap in S^{n-1} centered in $x = (0, \ldots, 0, 1)$ of radius ε . Write $K = S^{n-1} \setminus \{C_{\varepsilon} \cup -C_{\varepsilon}\}$. The *p*-ball *p*-conv (K) is not *q*-convex for any q > p and we can pick ε such that $\frac{s(p\text{-conv}(K))}{s(B_{\ell_2^n})} \sim 1$.

Observe that the left inequality is actually *equivalent* to the existence of a constant $C_p > 0$ such that for every *p*-ball B, $\left(\frac{|\hat{B}|}{|B|}\right)^{1/n} \leq C_p n^{1/p-1}$ and by Lemma 2 iv), this is also equivalent to the inequality $N(\hat{B}, B) \leq C_p n^{1/p-1}$.

With respect to the Milman ellipsoid theorem we obtain

Proposition 2. Let $0 . There exists a numerical constant <math>C_p > 0$ such that for every *p*-ball *B* there is an ellipsoid *D* such that $M(B, D) \leq C_p n^{1/p-1}$.

Proof: Given a *p*-ball B let D be the Milman ellipsoid of B. Then,

$$M(B,D) = \left(\frac{|B+D|}{|B\cap D|} \cdot \frac{|B^{\circ}+D|}{|B^{\circ}\cap D|}\right)^{1/n}$$
$$= \left(\frac{|\hat{B}+D|}{|\hat{B}\cap D|} \cdot \frac{|\hat{B}^{\circ}+D|}{|\hat{B}^{\circ}\cap D|}\right)^{1/n} \left(\frac{|B+D|}{|\hat{B}+D|}\right)^{1/n} \left(\frac{|\hat{B}\cap D|}{|B\cap D|}\right)^{1/n}$$
$$\leq M(\hat{B},D) \left(\frac{|\hat{B}\cap D|}{|B\cap D|}\right)^{1/n} \leq C_p n^{1/p-1}$$

The bound for M(B, D) is sharp. Indeed, if there was a function $f(n) << n^{1/p-1}$ such that for every a *p*-ball *B* there was an ellipsoid *D* with $M(B, D) \leq f(n)$, then

$$\frac{s(B_{\ell_2^n})}{f(n)} = \frac{s(D)}{f(n)} \le \left(|B \cap D| \cdot |B^{\circ} \cap D|\right)^{1/n} \le s(B)$$

and we would have, $s(B) \ge \frac{s(B_{\ell_2^n})}{f(n)} >> n^{-1/p}$ which is not possible.

Acknowledgments. The authors are indebted to the referee for some fruitful comments which led them to improve the presentation of the paper.

References

- [B-L] Bergh, J. Löfström, J.: Interpolation Spaces. An Introduction. Springer-Verlag, 223. Berlin Heildelberg (1976).
- [B-M] Bourgain, J., Milman, V.D.: On Mahler's conjecture on the volume of a convex symmetric body and its polar. Preprint I.H.E.S., March 1985.
 - [Br] Brunn, H.: Uber Ovale und Eiflächen. Innaugural dissertation. München 1887.
 - [Ca] Carl B.: Entropy numbers, s-numbers, and eigenvalue problems. J. Funct. Anal. 41, 290-306 (1981).
- [G-K] Gordon, Y., Kalton, N.J.: Local structure for quasi-normed spaces. Preprint.
- [Ja] Jarchow, H.: Locally convex spaces. B.G. Teubner Stuttgart, (1981).
- [Ka] Kalton, N.: Convexity, Type and the Three Space Problem. Studia Math. 69, 247-287 (1980-81).
- [K-S] Kalton, N., Sik-Chung Tam: Factorization theorems for quasi-normed spaces. Houston J. Math. 19 (1993), 301-317.
- [K-P-R] Kalton, N., Peck, N.T., Roberts, J.W.: An F-space sampler. London Math. Soc. Lecture Notes 89. Cambridge Univ. Press. Cambridge (1985).
 - [Lu] Lusternik, L.A.: Die Brunn-Minkowskische Ungleichung f
 ür beliebige messbare Mengen. C.R. Acad.Sci.URSS 8, 55-58 (1935).
 - [Mil 1] Milman, V.D.: Inégalité de Brunn-Minkowsky inverse et applications à la théorie locale des espaces normés. C.R. Acad.Sci.Paris 302,Sér 1, 25-28 (1986).
 - [Mil 2] Milman, V.D.: Isomorphic symmetrizations and geometric inequalities. In "Geometric Aspects of Functional Analysis" Israel Sem. GAFA. Lecture Notes in Mathematics, Springer, 1317, (1988), 107-131.
 - [Min] Minkowski, H.: Geometrie der Zahlen. Teubner, Leipzig (1910).
 - [Pe] Peck, T.: Banach-Mazur distances and projections on p-convex spaces. Math. Zeits. 177, 132-141 (1981).
 - [Pie] Pietsch, A.: Operator ideals. North-Holland, Berlin 1979.
 - [Pi 1] Pisier, G.: The volume of convex bodies and Banach Space Geometry. Cambridge University Press, Cambridge (1989).
 - [Pi 2] Pisier, G.: A new approach to several results of V. Milman. J. reine angew. Math. 393, 115-131 (1989).

///

- [Ro] Rolewicz, S.: Metric linear spaces. MM 56. PWN, Warsaw (1972).
- [Sa] Santaló, L.A.: Un invariante afín para los cuerpos convexos de n dimensiones. Portugal Math.
 8, 155-161 (1949).
- [T] Triebel, H.: Relations between approximation numbers and entropy numbers. Journal of Approx. Theory 78, (1994), 112-116.