An extension of Milman’s reverse Brunn-Minkowski inequality

by

Jesús Bastero *, Julio Bernués * and Ana Peña *

Departamento de Matemáticas. Facultad de Ciencias
Universidad de Zaragoza
50009-Zaragoza (Spain)

0. Introduction

The classical Brunn-Minkowski inequality states that for $A_1, A_2 \subset \mathbb{R}^n$ compact,

$$|A_1 + A_2|^{1/n} \geq |A_1|^{1/n} + |A_2|^{1/n} \quad (1)$$

where $| \cdot |$ denotes the Lebesgue measure on \mathbb{R}^n. Brunn [Br] gave the first proof of this inequality for A_1, A_2 compact convex sets, followed by an analytical proof by Minkowski [Min]. The inequality (1) for compact sets, not necessarily convex, was first proved by Lusternik [Lu]. A very simple proof of it can be found in [Pi 1], Ch. 1.

It is easy to see that one cannot expect the reverse inequality to hold at all, even if it is perturbed by a fixed constant and we restrict ourselves to balls (i.e. convex symmetric compact sets with the origin as an interior point). Take for instance $A_1 = \{(x_1 \ldots x_n) \in \mathbb{R}^n \mid |x_1| \leq \varepsilon, |x_i| \leq 1, 2 \leq i \leq n\}$ and $A_2 = \{(x_1 \ldots x_n) \in \mathbb{R}^n \mid |x_n| \leq \varepsilon, |x_i| \leq 1, 1 \leq i \leq n - 1\}$.

In 1986 V. Milman [Mil 1] discovered that if B_1 and B_2 are balls there is always a relative position of B_1 and B_2 for which a perturbed inverse of (1) holds. More precisely: “There exists a constant $C > 0$ such that for all $n \in \mathbb{N}$ and any balls $B_1, B_2 \subset \mathbb{R}^n$ we can find a linear transformation $u: \mathbb{R}^n \rightarrow \mathbb{R}^n$ with $|\det(u)| = 1$ and

$$|u(B_1) + B_2|^{1/n} \leq C(|B_1|^{1/n} + |B_2|^{1/n})$$

The nature of this reverse Brunn-Minkowski inequality is absolutely different from others (say reverse Blaschke-Santaló inequality, etc.). Brunn-Minkowski inequality is an isoperimetric inequality, (in \mathbb{R}^n it is its first and most important consequence till now) and there is no inverse to isoperimetric inequalities. So, it was a new idea that in the class of affine images of convex bodies there is some kind of inverse.

The result proved by Milman used hard technical tools (see [Mi1 1]). Pisier in [Pi 2] gave a new proof by using interpolation and entropy estimates. Milman in [Mil 2] gave another proof by using the “convex surgery” and achieving also some entropy estimates.

The aim of this paper is to extend this Milman’s result to a larger class of sets. Note that simple examples show that some conditions on a class of sets are clearly necessary.

For $B \subset \mathbb{R}^n$ body (i.e. compact, with non empty interior), consider $B_1 = B - x_0$, where x_0 is an interior point. If we denote by $N(B_1) = \cap_{|a| \geq 1} aB_1$ the balanced kernel of B_1, it is clear that $N(B_1)$ is a balanced compact neighbourhood of the origin, so there exists $c > 0$ such that $B_1 + B_1 \subset cN(B_1)$.

The Aoki-Rolewicz theorem (see [Ro], [K-P-R]) implies that there is $0 < p \leq 1$, namely $p = \log_2^{1/2}(c)$, such that $B_1 \subset B \subset 2^{1/p}B_1$, where B is the unit ball of some p-norm. This observation will allow us to work in a p-convex environment.

The above construction allows us to define the following parameter. For B a body let $p(B)$, $0 < p(B) \leq 1$, be the supremum of the p for which there exist a measure preserving affine transformation

* Partially supported by Grant DGICYT PS 90-0120

AMS Class.: 46B20 . Key words: p-convexity, entropy
of B, $T(B)$, and a p-norm with unit ball \bar{B} verifying $T(B) \subset \bar{B}$ and $|\bar{B}| \leq |8^{1/p}B|$, (by suitably adapting the results appearing in [Mil 2], it is clear that $p(B) \geq p$ for any p-convex body B).

Our main theorem is,

Theorem 1. Let $0 < p \leq 1$. There exists $C = C(p) \geq 1$ such that for all $n \in \mathbb{N}$ and all $A_1, A_2 \subset \mathbb{R}^n$ bodies such that $p(A_1), p(A_2) \geq p$, there exists an affine transformation $T(x) = u(x) + x_0$ with $x_0 \in \mathbb{R}^n$, $u: \mathbb{R}^n \to \mathbb{R}^n$ linear and $|\det(u)| = 1$ such that

$$|T(A_1) + A_2|^{1/n} \leq C(|A_1|^{1/n} + |A_2|^{1/n})$$

In particular, for the class of p-balls the constant C is universal (depending only on p).

We prove this theorem in section 2. The key is to estimate certain entropy numbers. We will use the convexity of quasi-normed spaces of Rademacher type $r > 1$, as well as interpolation results and iteration procedures.

We want to thank Gilles Pisier for a useful conversation during the preparation of this paper.

1. Notation and background

Throughout the paper X, Y, Z will denote finite dimensional real vector spaces. A quasi-norm on a real vector space X is a map $\| \cdot \|: X \to \mathbb{R}^+$ such that

i) $\|x\| > 0 \forall x \neq 0$.

ii) $\|tx\| = |t| \|x\| \forall t \in \mathbb{R}, x \in X$.

iii) $\exists C \geq 1$ such that $\|x + y\| \leq C(\|x\| + \|y\|) \forall x, y \in X$

If iii) is substituted by

iii’) $\|x + y\|^p \leq \|x\|^p + \|y\|^p$ for $x, y \in X$ and some $0 < p \leq 1$,

$\| \cdot \|$ is called a p-norm on X. Denote by B_X the unit ball of a quasi-normed or a p-normed space.

The above observations concerning the p-convexification of our problem can be restated using p-norm and quasi-norm notation. Recall that any compact balanced set with 0 in its interior is the unit ball of a quasi-norm.

By the concavity of the function t^p, any p-norm is a quasi-norm with $C = 2^{1/p-1}$. Conversely, by the Aoki-Rolewicz theorem, for any quasi-norm with constant C there exists p, namely $p = \log_2(2C)$, and a p-norm $\| \cdot \|$ such that $|x| \leq \|x\| \leq 4^{1/p}|x|$, $\forall x \in X$.

A set $K \subset X$ is called p-convex if $\lambda x + \mu y$, whenever $x, y \in K$, $\lambda, \mu \geq 0$, $\lambda^p + \mu^p = 1$. Given $K \subset X$, the p-convex hull (or p-convex envelope) of K is the intersection of all p-convex sets that contain K. It is denoted by $p\text{-conv~}(K)$. The closed unit ball of a p-normed space $(X, \| \cdot \|)$ will simply be called a p-ball. Any symmetric compact p-convex set in X with the origin as an interior point is the p-ball associated to some p-norm.

We say that a quasi-normed space $(X, \| \cdot \|)$ is of (Rademacher) type $q, 0 < q \leq 2$ if for some constant $T_q(X) > 0$ we have

$$\frac{1}{2^n} \sum_{\epsilon_i = \pm 1} \| \sum_{i=1}^n \epsilon_i x_i \| \leq T_q(X) \left(\sum_{i=1}^n \|x_i\|^q \right)^{1/q}, \forall x_i \in X, 1 \leq i \leq n, \forall n \in \mathbb{N}$$

Kalten, [Ka], proved that any quasi-normed space $(X, \| \cdot \|)$ of type $q > 1$ is convex. That is, the quasi-norm $\| \cdot \|$ is equivalent to a norm and moreover, the equivalence constant depends only on $T_q(X)$, (for a more precise statement and proof of this fact see [K-S]).

Given $f, g: \mathbb{N} \to \mathbb{R}^+$ we write $f \sim g$ if there exists a constant $C > 0$ such that $C^{-1}f(n) \leq g(n) \leq Cf(n), \forall n \in \mathbb{N}$. Numerical constants will always be denoted by C (or C_p if it depends only on p) although their value may change from line to line.
Let $u: X \to Y$ be a linear map between two quasi-normed spaces and $k \geq 1$. Recall the definition of the following numbers:

1. **Kolmogorov numbers**: $d_k(u) = \inf\{\|Q_S \circ u\| : S \subset Y \text{ subspace and } \dim(S) < k\}$ where $Q_S: Y \to Y/S$ is the quotient map.

2. **Covering numbers**: For $A_1, A_2 \subset X$, $N(A_1, A_2) = \inf\{N \in \mathbb{N} : \exists x_1, \ldots, x_N \in X \text{ such that } A_1 \subset \bigcup_{1 \leq i \leq N} \langle x_i + A_2 \rangle\}$.

3. **Entropy numbers**: $e_k(u) = \inf\{\varepsilon > 0 : N(u(B_X), B_Y) \leq 2^{k-1}\}$

The following two lemmas contain useful information about these numbers. The first one extends the p-convex case its convex analogue due to Carl ([Ca]). Its proof mimics the ones of Theorem 5.1 and 5.2 in [Pi 1] (see also [T]) with minor changes. In particular we identify X as a quotient of $\ell_p(I)$, for some I, and apply the metric lifting property of $\ell_p(I)$ in the class of p-normed spaces (see Proposition C.3.6 in [Pie]). The second one contains easy facts about $N(A, B)$ and its proof is similar to the one of Lemma 7.5. in [Pi 1].

Lemma 1. For all $\alpha > 0$ and $0 < p < 1$ there exists a constant $C_{\alpha, p} > 0$ such that for all linear map $u: X \to Y$, X, Y p-normed spaces and for all $n \in \mathbb{N}$ we have

$$\sup_{k \leq n} k^\alpha e_k(u) \leq C_{\alpha, p} \sup_{k \leq n} k^\alpha d_k(u)$$

Lemma 2.

i) For all $A_1, A_2, A_3 \subset X$, $N(A_1, A_3) \leq N(A_1, A_2) N(A_2, A_3)$

ii) For all $t > 0$ and $0 < p < 1$ there is $C_{p,t} > 0$ such that for all X p-normed space of dimension n, $N(B_X, tB_X) \leq C_{p,t}^n$.

iii) For any $A_1, A_2, K \subset \mathbb{R}^n$, $|A_1 + K| \leq N(A_1, A_2)|A_2 + K|$.

iv) Let B_1, B_2 be p-balls in \mathbb{R}^n for some p and $B_2 \subset B_1$; then $\frac{|B_1|}{|B_2|} \sim N(B_1, B_2)$.

For any $B \subset \mathbb{R}^n$ p-ball the polar set of B is defined as

$$B^\circ := \{x \in \mathbb{R}^n : \langle x, y \rangle \leq 1, \forall y \in B\}$$

where $\langle \cdot, \cdot \rangle$ denotes the standard scalar product on \mathbb{R}^n. Given B, D p-balls in \mathbb{R}^n we define the following two numbers:

$$s(B) := (|B| \cdot |B^\circ|)^{1/n}$$

and

$$M(B, D) := \left(\frac{|B + D|}{|B \cap D|}, \frac{|B^\circ + D^\circ|}{|B^\circ \cap D^\circ|}\right)^{1/n}$$

Observe that for any linear isomorphism $u: \mathbb{R}^n \to \mathbb{R}^n$ we have $s(u(B)) = s(B)$ and $M(u(B), u(D)) = M(B, D)$.

Recall that $s(B_{\ell_p^n}) \sim n^{-1/p} \sim s(B_{\ell_2^n})^{1/p}, 0 < p \leq 1$ ([Pi 1] pg. 11).

The following estimates on these numbers are known:
a) [Sa]. For every symmetric convex body $B \subset \mathbb{R}^n$, $s(B) \leq s(B_{1/2})$ with equality only if B is an ellipsoid. (Blaschke-Santaló’s inequality).

b) [B-M]. There exists a numerical constant $C > 0$ such that for any $n \in \mathbb{N}$ and any symmetric convex body $B \subset \mathbb{R}^n$, $s(B) \geq Cs(B_{1/2})$.

c) [Mil 1]. There exists a numerical constant $C > 0$ such that for any $n \in \mathbb{N}$ and any symmetric convex body $B \subset \mathbb{R}^n$, there is an ellipsoid (called Milman ellipsoid) $D \subset \mathbb{R}^n$ such that $M(B, D) \leq C$. (Milman ellipsoid theorem).

2. Entropy estimates and reverse Brunn-Minkowski inequality

We first introduce some useful notation: Let $B_1, B_2 \subset \mathbb{R}^n$ be two p-balls and $u: \mathbb{R}^n \to \mathbb{R}^n$ a linear map. We denote $u: B_1 \to B_2$ the operator between p-normed spaces $u: (\mathbb{R}^n, \| \cdot \|_{B_1}) \to (\mathbb{R}^n, \| \cdot \|_{B_2})$ where $\| \cdot \|_{B_i}$ is the p-norm on \mathbb{R}^n whose unit ball is B_i.

Proof of Theorem 1:

Let A_1, A_2 be two bodies in \mathbb{R}^n such that $p(A_1), p(A_2) \geq p$. It’s clear from the definition that there exist two \bar{p}-balls, B_1, B_2, (for instance, $\bar{p} = p/2$) and two measure preserving affine transformations T_1, T_2, verifying

$$|T_2^{-1}T_1(A_1) + A_2| \leq |B_1 + B_2|$$

and

$$|B_1|^{1/n} + |B_2|^{1/n} \leq C_p \left(|A_1|^{1/n} + |A_2|^{1/n} \right).$$

So, we only have to prove the theorem for p-balls.

In the convex case a way to obtain the reverse Brunn-Minkowski inequality is to prove that, for any symmetric convex body B, there exists an ellipsoid D verifying $|B| = |D|$ and

$$|B + \Delta|^{1/n} \leq C|D + \Delta|^{1/n} \tag{2}$$

for any, say compact, subset $\Delta \subset \mathbb{R}^n$ (C is an universal constant independent of B and n).

Indeed, let B_1, B_2 be two balls in \mathbb{R}^n. Suppose w.l.o.g. that D_i, the ellipsoids associated to B_i satisfy $u_2D_i = \alpha_iB_{1/2}$, where u_i are linear mappings with $|\det u_i| = 1$ and $|B_i|^{1/n} = \alpha_i|B_{1/2}|^{1/n}$. Then

$$|u_1B_1 + u_2B_2|^{1/n} \leq C^2|u_1D_1 + u_2D_2|^{1/n} = C^2(\alpha_1 + \alpha_2)|B_{1/2}|^{1/n} = C^2(|B_1|^{1/n} + |B_2|^{1/n})$$

In view of the preceding comments and of straightforward computations deduced from Lemma 2, in order to obtain (2) for p-balls it is sufficient to associate an ellipsoid D to each p-ball $B \subset \mathbb{R}^n$ in such a way that the corresponding covering numbers verify $N(B, D), N(D, B) \leq C^n$ for some constant C depending only on p.

It is important to remark now the fact that, what we deduce from covering numbers estimate is that the ellipsoid D associated to B actually verifies the stronger assertion

$$C^{-1}|B + \Delta|^{1/n} \leq |D + \Delta|^{1/n} \leq C|B + \Delta|^{1/n}$$

for any compact set Δ in \mathbb{R}^n, with constant depending only on p. Furthermore, the role of the ellipsoid can be played by any fixed p-ball in a “special position”.

Denote by \hat{B} the convex hull of B.

By definition of e_n, if $e_n(id: B \to D) \leq \lambda$ then $N(B, 2\lambda D) \leq 2^{n-1}$ and by Lemma 2-ii), $N(B, D) \leq \lambda^n$. (Of course, the same can be done with $N(D, B)$). Therefore our problem reduces to estimating entropy numbers. What we are going to prove is really a stronger result than we need, in the line of Theorem 7.13 of [Pi 2].
Lemma 3. Given \(\alpha > 1/p - 1/2 \), there exists a constant \(C = C(\alpha, p) \) such that, for any \(n \in \mathbb{N} \) and for any \(p \)-ball \(B \in \mathbb{R}^n \) we can find an ellipsoid \(D \in \mathbb{R}^n \) such that

\[
d_k(D \to B) + e_k(B \to D) \leq C \left(\frac{n}{k} \right)^\alpha
\]

for every \(1 \leq k \leq n \).

Proof of the Lemma. From Theorem 7.13 of [Pi 2] we can easily deduce the following fact: There exists a constant \(C(\alpha) > 0 \) such that for any \(1 \leq k \leq n, n \in \mathbb{N} \) and any ball \(\hat{B} \subset \mathbb{R}^n \), there is ellipsoid \(D_0 \subset \mathbb{R}^n \) such that the identity operator \(\text{id} : \mathbb{R}^n \to \mathbb{R}^n \) verifies

\[
d_k(\text{id} : D_0 \to \hat{B}) \leq C(\alpha) \left(\frac{n}{k} \right)^\alpha \quad \text{and} \quad e_k(\text{id} : \hat{B} \to D_0) \leq C(\alpha) \left(\frac{n}{k} \right)^\alpha
\]

(3)

For simplicity, since we are always going to deal with the identity operator, we will denote \(\text{id} : B_1 \to B_2 \) by \(B_1 \to B_2 \).

Let \(D_0 \) be the ellipsoid associated to \(\hat{B} \) in (3). It is well known [Pe], [G-K] that \(B \subseteq \hat{B} \subseteq n^{1/p-1}B \). This means \(\|B \to \hat{B}\| \leq 1 \) and \(\|B \to B\| \leq n^{1/p-1} \). Now, (3) and the ideal property of \(d_k \) and \(e_k \) imply

\[
d_k(D_0 \to B) \leq C(\alpha)n^{1/p-1} \left(\frac{n}{k} \right)^\alpha \quad \text{and} \quad e_k(B \to D_0) \leq C(\alpha) \left(\frac{n}{k} \right)^\alpha \quad \forall \ k \leq n
\]

This let us to introduce the constant \(C_n \) as the infimum of the constants \(C > 0 \) for which the conclusion of lemma 3 is true for all \(p \)-ball in \(\mathbb{R}^n \). Trivially \(C_n \leq C(\alpha)(1 + n^{1/p-1}) \). Let \(D_1 \) be an almost optimal ellipsoid such that

\[
d_k(D_1 \to B) \leq 2C_n \left(\frac{n}{k} \right)^\alpha
\]

\[
e_k(B \to D_1) \leq 2C_n \left(\frac{n}{k} \right)^\alpha
\]

(4)

for every \(1 \leq k \leq n \).

Use the real interpolation method with parameters \(\theta, 2 \) to interpolate the couple \(\text{id} : B \to B \) and \(\text{id} : D_1 \to B \). It is straightforward from its definition that for \(B_\theta = (B, D_1)_{\theta, 2}, \) we have

\[
d_k(B_\theta \to B) \leq \|B \to B\|^{1-\theta}(d_k(D_1 \to B))^\theta \quad \forall \ k \leq n
\]

and therefore,

\[
d_k(B_\theta \to B) \leq \left(2C_n \left(\frac{n}{k} \right)^\alpha \right)^\theta \quad \forall \ k \leq n
\]

Write \(\lambda = 4C_n \left(\frac{n}{k} \right)^\alpha \). By definition of the entropy numbers, there exist \(x_i \in \mathbb{R}^n \) such that \(B \subseteq \bigcup_{i=1}^{2^k-1} x_i + 2\lambda D_1 \). But by perturbing \(\lambda \) with an absolute constant we can suppose w.l.o.g. that \(x_i \in B \). For all \(z \in B \), there exists \(x_i \in B \) such that \(\|z - x_i\|_{\nu_0} \leq 2\lambda \). Also by \(p \)-convexity, \(\|z - x_i\|_B \leq 2^{1/p} \).

A general result (see [B-L] Ch. 3.) assures the existence of a constant \(C_p > 0 \) such that

\[
\|x\|_{B_\theta} \leq C_p \|x\|_B^{1-\theta}\|x\|_{D_1}^\theta.
\]

Therefore, for all \(z \in B \), there exists \(x_i \in B \) such that \(\|z - x_i\|_{B_\theta} \leq C_p \lambda^\theta \) which means

\[
e_k(B \to B_\theta) \leq C_p \left(2C_n \left(\frac{n}{k} \right)^\alpha \right)^\theta.
\]
Since $\alpha > 1/p - 1/2$, then we can pick $\theta \in (0, 1)$ such that
\[
\frac{2(1-p)}{2-p} < \theta < \min\{1, 1 - 1/2\alpha\}.
\]
Then B_{θ} has Rademacher type strictly bigger than 1 because
\[
\frac{1-\theta}{p} + \frac{\theta}{2} < 1.
\]
By Kalton’s result quoted before, we can suppose that B_{θ} is a ball and therefore we can apply to it (3) for $\gamma = \alpha(1 - \theta) > 1/2$ and assure the existence of another ellipsoid D_{2} such that
\[
d_{k}(D_{2} \rightarrow B_{\theta}) \leq C(\gamma) \left(\frac{n}{k}\right)^{\gamma} \quad \text{and} \quad e_{k}(B_{\theta} \rightarrow D_{2}) \leq C(\gamma) \left(\frac{n}{k}\right)^{\gamma} \quad \text{and} \quad \forall \ k \leq n.
\]
Recall that $d_{2k-1}(D_{2} \rightarrow B) \leq d_{k}(D_{2} \rightarrow B_{\theta})d_{k}(B_{\theta} \rightarrow B)$ and the same for the e_{k}’s. Thanks to the monotonicity of the numbers s_{k} we can use the what is known about s_{2k-1} for all s_{k}. Using the estimates obtained above we get $\forall \ k \leq n,$
\[
d_{k}(D_{2} \rightarrow B) \leq C(p, \alpha)2^{\theta}C_{n}^{d}(\alpha)^{\gamma + \alpha\theta} \quad \text{and} \quad e_{k}(B \rightarrow D_{2}) \leq C(p, \alpha)2^{\theta}C_{n}^{d}(\alpha)^{\gamma + \alpha\theta}.
\]
Hence by the election of γ and by minimality we obtain $C_{n}^{d-\theta} \leq C(p, \alpha)2^{\theta}$, and the conclusion of the lemma holds.

The theorem follows now from the estimate we achieved in Lemma 3 and by Lemma 1. Indeed, given any $\alpha > 1/p - 1/2$, if D is the ellipsoid associated to B by Lemma 3, we have
\[
n^{\alpha}e_{n}(D \rightarrow B) \leq \sup_{k \leq n} k^{\alpha}e_{k}(D \rightarrow B) \leq C(\alpha, p) \sup_{k \leq n} k^{\alpha}d_{k}(D \rightarrow B) \leq C(\alpha, p) \sup_{k \leq n} k^{\alpha}n^{\alpha} \leq C(\alpha, p) n^{\alpha}.
\]
and so, $e_{n}(D \rightarrow B) \leq C(\alpha, p)$. On the other hand just take $k = n$ in Lemma 3 and so, $e_{n}(B \rightarrow D) \leq C(\alpha, p)$.

Finally observe that since the constant $C(\alpha, p)$ depends only on p and α and we can take any $\alpha > 1/p - 1/2$ the thesis of the theorem as stated immediately follows.
3. Concluding remarks

We conclude this note by stating the corresponding versions of a) Blaschke-Santaló, b) reverse Blaschke-Santaló and c) Milman ellipsoid theorem, cited in section 1, in the context of \(p \)-normed spaces.

Proposition 1. Let \(0 < p \leq 1 \). There exists a numerical constant \(C_p > 0 \) such that for every \(p \)-ball \(B \subseteq \mathbb{R}^n \),
\[
C_p (s(B_{B})^{1/p}) \leq s(B) \leq s(B_{B})
\]
and in the second inequality, equality holds if only if \(B \) is an ellipsoid.

Proof: Denote by \(\hat{B} \) the convex envelope of \(B \). Since \(\hat{B}^p = B^p \) we have \(s(B) \leq s(\hat{B}) \leq s(B_{B}) \). If \(s(B) = s(B_{B}) \), then \(\hat{B} \) is an ellipsoid. We will show that \(B = \hat{B} \). Every \(x \) in the boundary of \(\hat{B} \) can be written as \(x = \sum \lambda_i x_i, x_i \in B, \sum \lambda_i = 1; \) but since \(\hat{B} \) is an ellipsoid, \(x \) is an extreme point of \(\hat{B} \) and so \(x = x_i \) for some \(i \) that is \(x \in B \). This shows \(B = \hat{B} \) and we are done.

For the first inequality, \(B \subseteq \hat{B} \subseteq n^{1/p-1}B \) easily implies \(\left(\frac{\hat{B}}{|B|} \right)^{1/n} \leq n^{1/p-1} \) and so,
\[
s(B) = (|B| \cdot |B^p|)^{1/n} = (|B| \cdot |\hat{B}^p|)^{1/n} = \left(\frac{|B|}{|\hat{B}|} \right)^{1/n} (|\hat{B}| \cdot |B^p|)^{1/n} \geq \frac{Cs(B_{B})}{n^{1/p-1}} = Cn^{1/p-1} = C_p (s(B_{B})^{1/p})
\]

The left inequality above is sharp since \(s(B_{B}) = C_p (s(B_{B})^{1/p}) \). The right inequality is also sharp since every ball is a \(p \)-ball for every \(0 < p < 1 \). And it is sharp even if we restrict ourselves to the class of \(p \)-balls which are not \(q \)-convex for any \(q > p \), as it is showed by the following example: Let \(\varepsilon > 0 \) and \(C_\varepsilon \) be a relatively open cap in \(S^{n-1} \) centered in \(x = (0, \ldots, 0, 1) \) of radius \(\varepsilon \). Write \(K = S^{n-1} \setminus \{C_\varepsilon \cup -C_\varepsilon \} \). The \(p \)-ball \(p \)-conv \((K) \) is not \(q \)-convex for any \(q > p \) and we can pick \(\varepsilon \) such that \(\frac{s(\text{p-conv } (K))}{s(B_{B})} \sim 1 \).

Observe that the left inequality is actually equivalent to the existence of a constant \(C_p > 0 \) such that for every \(p \)-ball \(B \), \(\left(\frac{|\hat{B}|}{|B|} \right)^{1/n} \leq C_p n^{1/p-1} \) and by Lemma 2 iv), this is also equivalent to the inequality \(N(B, B) \leq C_p n^{1/p-1} \).

With respect to the Milman ellipsoid theorem we obtain

Proposition 2. Let \(0 < p < 1 \). There exists a numerical constant \(C_p > 0 \) such that for every \(p \)-ball \(B \) there is an ellipsoid \(D \) such that \(M(B, D) \leq C_p n^{1/p-1} \).

Proof: Given a \(p \)-ball \(B \) let \(D \) be the Milman ellipsoid of \(\hat{B} \). Then,
\[
M(B, D) = \left(\frac{|B + D|}{|B \cap D|}, \frac{|B^p + D|}{|B^p \cap D|} \right)^{1/n} \leq \left(\frac{|\hat{B} + D|}{|\hat{B} \cap D|}, \frac{|\hat{B}^p + D|}{|\hat{B}^p \cap D|} \right)^{1/n} \leq M(\hat{B}, D) \left(\frac{|\hat{B} \cap D|}{|B \cap D|} \right)^{1/n} \leq C_p n^{1/p-1}
\]
The bound for $M(B, D)$ is sharp. Indeed, if there was a function $f(n) << n^{1/p-1}$ such that for every a p-ball B there was an ellipsoid D with $M(B, D) \leq f(n)$, then

$$\frac{s(B_2)}{f(n)} = \frac{s(D)}{f(n)} \leq (|B \cap D| \cdot |B^o \cap D|)^{1/n} \leq s(B)$$

and we would have, $s(B) \geq \frac{s(B_2)}{f(n)} >> n^{-1/p}$ which is not possible.

Acknowledgments. The authors are indebted to the referee for some fruitful comments which led them to improve the presentation of the paper.

References

