An extension of Milman's reverse Brunn-Minkowski inequality

by
Jesús Bastero *, Julio Bernués * and Ana Peña *
Departamento de Matemáticas. Facultad de Ciencias
Universidad de Zaragoza
50009-Zaragoza (Spain)

0. Introduction

The classical Brunn-Minkowski inequality states that for $A_{1}, A_{2} \subset \mathbb{R}^{n}$ compact,

$$
\begin{equation*}
\left|A_{1}+A_{2}\right|^{1 / n} \geq\left|A_{1}\right|^{1 / n}+\left|A_{2}\right|^{1 / n} \tag{1}
\end{equation*}
$$

where $|\cdot|$ denotes the Lebesgue measure on \mathbb{R}^{n}. Brunn $[\mathbf{B r}]$ gave the first proof of this inequality for A_{1}, A_{2} compact convex sets, followed by an analytical proof by Minkowski [Min]. The inequality (1) for compact sets, not necessarily convex, was first proved by Lusternik [Lu]. A very simple proof of it can be found in $[\mathbf{P i} 1]$, Ch. 1.

It is easy to see that one cannot expect the reverse inequality to hold at all, even if it is perturbed by a fixed constant and we restrict ourselves to balls (i.e. convex symmetric compact sets with the origin as an interior point). Take for instance $A_{1}=\left\{\left(x_{1} \ldots x_{n}\right) \in \mathbb{R}^{n}| | x_{1}\left|\leq \varepsilon,\left|x_{i}\right| \leq 1,2 \leq i \leq n\right\}\right.$ and $A_{2}=\left\{\left(x_{1} \ldots x_{n}\right) \in \mathbb{R}^{n}| | x_{n}\left|\leq \varepsilon,\left|x_{i}\right| \leq 1,1 \leq i \leq n-1\right\}\right.$.

In 1986 V . Milman [Mil 1] discovered that if B_{1} and B_{2} are balls there is always a relative position of B_{1} and B_{2} for which a perturbed inverse of (1) holds. More precisely: "There exists a constant $C>0$ such that for all $n \in \mathbb{N}$ and any balls $B_{1}, B_{2} \subset \mathbb{R}^{n}$ we can find a linear transformation $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $|\operatorname{det}(u)|=1$ and

$$
\left|u\left(B_{1}\right)+B_{2}\right|^{1 / n} \leq C\left(\left|B_{1}\right|^{1 / n}+\left|B_{2}\right|^{1 / n}\right) "
$$

The nature of this reverse Brunn-Minkowski inequality is absolutely different from others (say reverse Blaschke-Santaló inequality, etc.). Brunn-Minkowski inequality is an isoperimetric inequality, (in \mathbb{R}^{n} it is its first and most important consequence till now) and there is no inverse to isoperimetric inequalities. So, it was a new idea that in the class of affine images of convex bodies there is some kind of inverse.

The result proved by Milman used hard technical tools (see [Mil 1]). Pisier in [Pi 2] gave a new proof by using interpolation and entropy estimates. Milman in [Mil 2] gave another proof by using the "convex surgery" and achieving also some entropy estimates.

The aim of this paper is to extend this Milman's result to a larger class of sets. Note that simple examples show that some conditions on a class of sets are clearly necessary.

For $B \subset \mathbb{R}^{n}$ body (i.e. compact, with non empty interior), consider $B_{1}=B-x_{0}$, where x_{0} is an interior point. If we denote by $N\left(B_{1}\right)=\cap_{|a| \geq 1} a B_{1}$ the balanced kernel of B_{1}, it is clear that $N\left(B_{1}\right)$ is a balanced compact neighbourhood of the origin, so there exists $c>0$ such that $B_{1}+B_{1} \subset c N\left(B_{1}\right)$. The Aoki-Rolewicz theorem (see [Ro], $[\mathbf{K} \mathbf{- P} \mathbf{- R}]$) implies that there is $0<p \leq 1$, namely $p=\log _{2}^{-1}(c)$, such that $B_{1} \subset \bar{B} \subset 2^{1 / p} B_{1}$, where \bar{B} is the unit ball of some p-norm. This observation will allow us to work in a p-convex enviroment.

The above construction allows us to define the following parameter. For B a body let $p(B), 0<$ $p(B) \leq 1$, be the supremum of the p for which there exist a measure preserving affine transformation

[^0]AMS Class.: 46B20, . Key words: p-convexity, entropy
of $B, T(B)$, and a p-norm with unit ball \bar{B} verifying $T(B) \subset \bar{B}$ and $|\bar{B}| \leq\left|8^{1 / p} B\right|$, (by suitably adapting the results appearing in [Mil 2], it is clear that $p(B) \geq p$ for any p-convex body B).

Our main theorem is,
Theorem 1. Let $0<p \leq 1$. There exists $C=C(p) \geq 1$ such that for all $n \in \mathbb{N}$ and all $A_{1}, A_{2} \subset \mathbb{R}^{n}$ bodies such that $p\left(A_{1}\right), p\left(A_{2}\right) \geq p$, there exists an affine transformation $T(x)=u(x)+x_{0}$ with $x_{0} \in \mathbb{R}^{n}, u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ linear and $|\operatorname{det}(u)|=1$ such that

$$
\left|T\left(A_{1}\right)+A_{2}\right|^{1 / n} \leq C\left(\left|A_{1}\right|^{1 / n}+\left|A_{2}\right|^{1 / n}\right)
$$

In particular, for the class of p-balls the constant C is universal (depending only on p).
We prove this theorem in section 2. The key is to estimate certain entropy numbers. We will use the convexity of quasi-normed spaces of Rademacher type $r>1$, as well as interpolation results and iteration procedures.

We want to thank Gilles Pisier for a useful conversation during the preparation of this paper.

1. Notation and background

Throughout the paper X, Y, Z will denote finite dimensional real vector spaces. A quasi-norm on a real vector space X is a map $\|\cdot\|: X \rightarrow \mathbb{R}^{+}$such that
i) $\|x\|>0 \forall x \neq 0$.
ii) $\|t x\|=|t|\|x\| \forall t \in \mathbb{R}, x \in X$.
iii) $\exists C \geq 1$ such that $\|x+y\| \leq C(\|x\|+\|y\|) \forall x, y \in X$

If iii) is substituted by
iii') $\|x+y\|^{p} \leq\|x\|^{p}+\|y\|^{p}$ for $x, y \in X$ and some $0<p \leq 1$,
$\|\cdot\|$ is called a p-norm on X. Denote by B_{X} the unit ball of a quasi-normed or a p-normed space.
The above observations concerning the p-convexification of our problem can be restated using p-norm and quasi-norm notation. Recall that any compact balanced set with 0 in its interior is the unit ball of a quasi-norm.

By the concavity of the function t^{p}, any p-norm is a quasi-norm with $C=2^{1 / p-1}$. Conversely, by the Aoki-Rolewicz theorem, for any quasi-norm with constant C there exists p, namely $p=\log _{2}^{-1}(2 C)$, and a p-norm $|\cdot|$ such that $|x| \leq\|x\| \leq 4^{1 / p}|x|, \forall x \in X$.

A set $K \subset X$ is called p-convex if $\lambda x+\mu y$, whenever $x, y \in K, \lambda, \mu \geq 0, \lambda^{p}+\mu^{p}=1$. Given $K \subseteq X$, the p-convex hull (or p-convex envelope) of K is the intersection of all p-convex sets that contain K. It is denoted by p-conv (K). The closed unit ball of a p-normed space $(X,\|\cdot\|)$ will simply be called a p-ball. Any symmetric compact p-convex set in X with the origin as an interior point is the p-ball associated to some p-norm.

We say that a quasi-normed space $(X,\|\cdot\|)$ is of (Rademacher) type $q, 0<q \leq 2$ if for some constant $T_{q}(X)>0$ we have

$$
\frac{1}{2^{n}} \sum_{\varepsilon_{i}= \pm 1}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\| \leq T_{q}(X)\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{q}\right)^{1 / q}, \quad \forall x_{i} \in X, 1 \leq i \leq n, \forall n \in \mathbb{N}
$$

Kalton, $[\mathbf{K a}]$, proved that any quasi-normed space $(X,\|\cdot\|)$ of type $q>1$ is convex. That is, the quasi-norm $\|\cdot\|$ is equivalent to a norm and moreover, the equivalence constant depends only on $T_{q}(X)$, (for a more precise statement and proof of this fact see $[\mathbf{K}-\mathbf{S}]$).

Given $f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$we write $f \sim g$ if there exists a constant $C>0$ such that $C^{-1} f(n) \leq g(n) \leq$ $C f(n), \forall n \in \mathbb{N}$. Numerical constants will always be denoted by C (or C_{p} if it depends only on p) although their value may change from line to line.

Let $u: X \rightarrow Y$ be a linear map between two quasi-normed spaces and $k \geq 1$. Recall the definition of the following numbers:

Kolmogorov numbers: $d_{k}(u)=\inf \left\{\left\|Q_{S} \circ u\right\| \mid S \subset Y\right.$ subspace and $\left.\operatorname{dim}(S)<k\right\}$ where $Q_{S}: Y \rightarrow Y / S$ is the quotient map.
Covering numbers: For $A_{1}, A_{2} \subset X, N\left(A_{1}, A_{2}\right)=\inf \left\{N \in I N \mid \exists x_{1} \ldots x_{N} \in X\right.$ such that $A_{1} \subset$ $\left.\bigcup_{1 \leq i \leq N}\left(x_{i}+A_{2}\right)\right\}$.
Entropy numbers: $e_{k}(u)=\inf \left\{\varepsilon>0 \mid N\left(u\left(B_{X}\right), \varepsilon B_{Y}\right) \leq 2^{k-1}\right\}$
The sequences $\left\{d_{k}(u)\right\},\left\{e_{k}(u)\right\}$ are non-increasing and satisfy $d_{1}(u)=e_{1}(u)=\|u\|$. If $\operatorname{dim}(X)=$ $\operatorname{dim}(Y)=n$ then $d_{k}(u)=0$ for all $k>n$. Denote s_{k} either d_{k} or e_{k}. For all linear operators $u: X \rightarrow Y$, $v: Y \rightarrow Z$ we have $s_{k}(v \circ u)=\|u\| s_{k}(v)$ and $s_{k}(v \circ u)=\|v\| s_{k}(u), \forall k \in \mathbb{N}$ (called the ideal property of s_{k}) and

$$
s_{k+n-1}(v \circ u) \leq s_{k}(v) s_{n}(u) \quad \forall k, n \in \mathbb{N}
$$

The following two lemmas contain useful information about these numbers. The first one extends to the p-convex case its convex analogue due to Carl ([Ca]). Its proof mimics the ones of Theorem 5.1 and 5.2 in $\left[\begin{array}{ll}\mathbf{P i} & 1]\end{array}\right.$ (see also $[\mathbf{T}]$) with minor changes. In particular we identify X as a quotient of $\ell_{p}(I)$, for some I, and apply the metric lifting property of $\ell_{p}(I)$ in the class of p-normed spaces (see Proposition C.3.6 in [Pie]). The second one contains easy facts about $N(A, B)$ and its proof is similar to the one of Lemma 7.5. in [Pil].

Lemma 1. For all $\alpha>0$ and $0<p<1$ there exists a constant $C_{\alpha, p}>0$ such that for all linear map $u: X \rightarrow Y, X, Y$ p-normed spaces and for all $n \in \mathbb{N}$ we have

$$
\sup _{k \leq n} k^{\alpha} e_{k}(u) \leq C_{\alpha, p} \sup _{k \leq n} k^{\alpha} d_{k}(u)
$$

Lemma 2.

i) For all $A_{1}, A_{2}, A_{3} \subset X, N\left(A_{1}, A_{3}\right) \leq N\left(A_{1}, A_{2}\right) N\left(A_{2}, A_{3}\right)$
ii) For all $t>0$ and $0<p<1$ there is $C_{p, t}>0$ such that for all X p-normed space of dimension n, $N\left(B_{X}, t B_{X}\right) \leq C_{p, t}^{n}$.
iii) For any $A_{1}, A_{2}, K \subset \mathbb{R}^{n},\left|A_{1}+K\right| \leq N\left(A_{1}, A_{2}\right)\left|A_{2}+K\right|$.
iv) Let B_{1}, B_{2} be p-balls in \mathbb{R}^{n} for some p and $B_{2} \subset B_{1}$; then $\frac{\left|B_{1}\right|}{\left|B_{2}\right|} \sim N\left(B_{1}, B_{2}\right)$.

For any $B \subseteq \mathbb{R}^{n} p$-ball the polar set of B is defined as

$$
B^{\circ}:=\left\{x \in \mathbb{R}^{n} \mid\langle x, y\rangle \leq 1, \forall y \in B\right\}
$$

where $\langle\cdot, \cdot\rangle$ denotes the standard scalar product on \mathbb{R}^{n}. Given $B, D p$-balls in \mathbb{R}^{n} we define the following two numbers:

$$
s(B):=\left(|B| \cdot\left|B^{\circ}\right|\right)^{1 / n}
$$

and

$$
M(B, D):=\left(\frac{|B+D|}{|B \cap D|} \cdot \frac{\left|B^{\circ}+D^{\circ}\right|}{\left|B^{\circ} \cap D^{\circ}\right|}\right)^{1 / n}
$$

Observe that for any linear isomorphism $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ we have $s(u(B))=s(B)$ and

$$
M(u(B), u(D))=M(B, D)
$$

Recall that $s\left(B_{\ell_{p}^{n}}\right) \sim n^{-1 / p} \sim s\left(B_{\ell_{2}^{n}}\right)^{1 / p}, 0<p \leq 1$ ([Pi 1] pg. 11).
The following estimates on these numbers are known:
a) [Sa]. For every symmetric convex body $B \subset \mathbb{R}^{n}, s(B) \leq s\left(B_{\ell_{2}^{n}}\right)$ with equality only if B is an ellipsoid. (Blaschke-Santaló's inequality).
b) $[\mathrm{B}-\mathrm{M}]$. There exists a numerical constant $C>0$ such that for any $n \in \mathbb{N}$ and any symmetric convex body $B \subset \mathbb{R}^{n}, s(B) \geq \operatorname{Cs}\left(B_{\ell_{2}^{n}}\right)$.
c) [Mil 1]. There exists a numerical constant $C>0$ such that for any $n \in \mathbb{N}$ and any symmetric convex body $B \subset \mathbb{R}^{n}$, there is an ellipsoid (called Milman ellipsoid) $D \subset \mathbb{R}^{n}$ such that $M(B, D) \leq C,($ Milman ellipsoid theorem).

2. Entropy estimates and reverse Brunn-Minkowski inequality

We first introduce some useful notation: Let $B_{1}, B_{2} \subset \mathbb{R}^{n}$ be two p-balls and $u: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ a linear map. We denote $u: B_{1} \rightarrow B_{2}$ the operator between p-normed spaces $u:\left(\mathbb{R}^{n},\|\cdot\|_{B_{1}}\right) \rightarrow\left(\mathbb{R}^{n},\|\cdot\|_{B_{2}}\right)$ where $\|\cdot\|_{B_{i}}$ is the p-norm on \mathbb{R}^{n} whose unit ball is B_{i}.

Proof of Theorem 1:

Let A_{1}, A_{2} be two bodies in \mathbb{R}^{n} such that $p\left(A_{1}\right), p\left(A_{2}\right) \geq p$. It's clear from the definition that there exist two \bar{p}-balls, B_{1}, B_{2}, (for instance, $\bar{p}=p / 2$) and two measure preserving affine transformations T_{1}, T_{2}, verifying

$$
\left|T_{2}^{-1} T_{1}\left(A_{1}\right)+A_{2}\right| \leq\left|B_{1}+B_{2}\right|
$$

and

$$
\left|B_{1}\right|^{1 / n}+\left|B_{2}\right|^{1 / n} \leq C_{p}\left(\left|A_{1}\right|^{1 / n}+\left|A_{2}\right|^{1 / n}\right) .
$$

So, we only have to prove the theorem for p-balls.
In the convex case a way to obtain the reverse Brunn-Minkowski inequality is to prove that, for any symmetric convex body B, there exists an ellipsoid D verifying $|B|=|D|$ and

$$
\begin{equation*}
|B+\Delta|^{1 / n} \leq C|D+\Delta|^{1 / n} \tag{2}
\end{equation*}
$$

for any, say compact, subset $\Delta \subseteq \mathbb{R}^{n}$ (C is an universal constant independent of B and n).
Indeed, let B_{1}, B_{2} be two balls in \mathbb{R}^{n}. Suppose w.l.o.g. that D_{i}, the ellipsoids associated to B_{i} satisfy $u_{2} D_{i}=\alpha_{i} B_{\ell_{2}^{n}}$, where u_{i} are linear mappings with $\left|\operatorname{det} u_{i}\right|=1$ and $\left|B_{i}\right|^{1 / n}=\alpha_{i}\left|B_{\ell_{2}^{n}}\right|^{1 / n}$. Then

$$
\begin{aligned}
\left|u_{1} B_{1}+u_{2} B_{2}\right|^{1 / n} & \leq C^{2}\left|u_{1} D_{1}+u_{2} D_{2}\right|^{1 / n} \\
& =C^{2}\left(\alpha_{1}+\alpha_{2}\right)\left|B_{\ell_{2}^{n}}\right|^{1 / n}=C^{2}\left(\left|B_{1}\right|^{1 / n}+\left|B_{2}\right|^{1 / n}\right)
\end{aligned}
$$

In view of the preceding comments and of straightforward computations deduced from Lemma 2, in order to obtain (2) for p-balls it is sufficent to associate an ellipsoid D to each p-ball $B \subset \mathbb{R}^{n}$ in such a way that the corresponding covering numbers verify $N(B, D), N(D, B) \leq C^{n}$ for some constant C depending only on p.

It is important to remark now the fact that, what we deduce from covering numbers estimate is that the ellipsoid D associated to B actually verifies the stronger assertion

$$
C^{-1}|B+\Delta|^{1 / n} \leq|D+\Delta|^{1 / n} \leq C|B+\Delta|^{1 / n}
$$

for any compact set Δ in \mathbb{R}^{n}, with constant depending only on p. Furthermore, the role of the ellipsoid can be played by any fixed p-ball in a "spetial position".

Denote by \hat{B} the convex hull of B.
By definition of e_{n}, if $e_{n}(i d: B \rightarrow D) \leq \lambda$ then $N(B, 2 \lambda D) \leq 2^{n-1}$ and by Lemma 2-ii), $N(B, D) \leq$ λ^{n}. (Of course, the same can be done with $N(D, B)$). Therefore our problem reduces to estimating entropy numbers. What we are going to prove is really a stronger result than we need, in the line of Theorem 7.13 of [$\mathbf{P i} 2]$.

Lemma 3. Given $\alpha>1 / p-1 / 2$, there exists a constant $C=C(\alpha, p)$ such that, for any $n \in \mathbb{N}$ and for any p-ball $B \in \mathbb{R}^{n}$ we can find an ellipsoid $D \in \mathbb{R}^{n}$ such that

$$
d_{k}(D \rightarrow B)+e_{k}(B \rightarrow D) \leq C\left(\frac{n}{k}\right)^{\alpha}
$$

for every $1 \leq k \leq n$.
Proof of the Lemma. From Theorem 7.13 of [Pi 2] we can easily deduce the following fact: There exists a constant $C(\alpha)>0$ such that for any $1 \leq k \leq n, n \in \mathbb{N}$ and any ball $\hat{B} \subset \mathbb{R}^{n}$, there is ellipsoid $D_{0} \subset \mathbb{R}^{n}$ such that the identity operator $i d: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ verifies

$$
\begin{equation*}
d_{k}\left(i d: D_{0} \rightarrow \hat{B}\right) \leq C(\alpha)\left(\frac{n}{k}\right)^{\alpha} \quad \text { and } \quad e_{k}\left(i d: \hat{B} \rightarrow D_{0}\right) \leq C(\alpha)\left(\frac{n}{k}\right)^{\alpha} \tag{3}
\end{equation*}
$$

For simplicity, since we are always going to deal with the identity operator, we will denote $i d: B_{1} \rightarrow B_{2}$ by $B_{1} \rightarrow B_{2}$.

Let D_{0} be the ellipsoid associated to \hat{B} in (3). It is well known [Pe], [G-K] that $B \subseteq \hat{B} \subseteq$ $n^{1 / p-1} B$. This means $\|B \rightarrow \hat{B}\| \leq 1$ and $\|\hat{B} \rightarrow B\| \leq n^{1 / p-1}$. Now, (3) and the ideal property of d_{k} and e_{k} imply

$$
d_{k}\left(D_{0} \rightarrow B\right) \leq C(\alpha) n^{1 / p-1}\left(\frac{n}{k}\right)^{\alpha} \quad \text { and } \quad e_{k}\left(B \rightarrow D_{0}\right) \leq C(\alpha)\left(\frac{n}{k}\right)^{\alpha} \quad \forall k \leq n
$$

This let us to introduce the constant C_{n} as the infimum of the constants $C>0$ for which the conclusion of lemma 3 is true for all p-ball in \mathbb{R}^{n}. Trivially $C_{n} \leq C(\alpha)\left(1+n^{1 / p-1}\right)$. Let D_{1} be an almost optimal ellipsoid such that

$$
\begin{align*}
& d_{k}\left(D_{1} \rightarrow B\right) \leq 2 C_{n}\left(\frac{n}{k}\right)^{\alpha} \\
& e_{k}\left(B \rightarrow D_{1}\right) \leq 2 C_{n}\left(\frac{n}{k}\right)^{\alpha} \tag{4}
\end{align*}
$$

for every $1 \leq k \leq n$.
Use the real interpolation method with parameters $\theta, 2$ to interpolate the couple $i d: B \rightarrow B$ and $i d: D_{1} \rightarrow B$. It is straightforward from its definition that for $B_{\theta}:=\left(B, D_{1}\right)_{\theta, 2}$, we have

$$
d_{k}\left(B_{\theta} \rightarrow B\right) \leq\|B \rightarrow B\|^{1-\theta}\left(d_{k}\left(D_{1} \rightarrow B\right)\right)^{\theta} \quad \forall k \leq n
$$

and therefore,

$$
d_{k}\left(B_{\theta} \rightarrow B\right) \leq\left(2 C_{n}\left(\frac{n}{k}\right)^{\alpha}\right)^{\theta} \quad \forall k \leq n
$$

Write $\lambda=4 C_{n}\left(\frac{n}{k}\right)^{\alpha}$. By definition of the entropy numbers, there exist $x_{i} \in \mathbb{R}^{n}$ such that $B \subset \bigcup_{i=1}^{2^{k-1}} x_{i}+2 \lambda D_{1}$. But by perturbing λ with an absolute constant we can suppose w.l.o.g. that $x_{i} \in B$. For all $z \in B$, there exists $x_{i} \in B$ such that $\left\|z-x_{i}\right\|_{D_{0}} \leq 2 \lambda$. Also by p-convexity, $\left\|z-x_{i}\right\|_{B} \leq 2^{1 / p}$.

A general result (see [B-L] Ch. 3.) assures the existence of a constant $C_{p}>0$ such that

$$
\|x\|_{B_{\theta}} \leq C_{p}\|x\|_{B}^{1-\theta}\|x\|_{D_{1}}^{\theta} .
$$

Therefore, for all $z \in B$, there exists $x_{i} \in B$ such that $\left\|z-x_{i}\right\|_{B_{\theta}} \leq C_{p} \lambda^{\theta}$ which means

$$
e_{k}\left(B \rightarrow B_{\theta}\right) \leq C_{p}\left(2 C_{n}\left(\frac{n}{k}\right)^{\alpha}\right)^{\theta}
$$

Since $\alpha>1 / p-1 / 2$, then we can pick $\theta \in(0,1)$ such that $\frac{2(1-p)}{2-p}<\theta<\min \{1,1-1 / 2 \alpha\}$. Then B_{θ} has Rademacher type strictly bigger than 1 because $\frac{1-\theta}{p}+\frac{\theta}{2}<1$.

By Kalton's result quoted before, we can suppose that B_{θ} is a ball and therefore we can apply to it (3) for $\gamma=\alpha(1-\theta)>1 / 2$ and assure the existence of another ellipsoid D_{2} such that

$$
d_{k}\left(D_{2} \rightarrow B_{\theta}\right) \leq C(\gamma)\left(\frac{n}{k}\right)^{\gamma} \quad \text { and } \quad e_{k}\left(B_{\theta} \rightarrow D_{2}\right) \leq C(\gamma)\left(\frac{n}{k}\right)^{\gamma} \quad \text { and } \quad \forall k \leq n
$$

Recall that $d_{2 k-1}\left(D_{2} \rightarrow B\right) \leq d_{k}\left(D_{2} \rightarrow B_{\theta}\right) d_{k}\left(B_{\theta} \rightarrow B\right)$ and the same for the e_{k} 's. Thanks to the monotonicity of the numbers s_{k} we can use the what is known about $s_{2 k-1}$ for all s_{k}. Using the estimates obtained above we get $\forall k \leq n$,

$$
d_{k}\left(D_{2} \rightarrow B\right) \leq C(p, \alpha) 2^{\theta} C_{n}^{\theta}\left(\frac{n}{k}\right)^{\gamma+\alpha \theta} \quad \text { and } \quad e_{k}\left(B \rightarrow D_{2}\right) \leq C(p, \alpha) 2^{\theta} C_{n}^{\theta}\left(\frac{n}{k}\right)^{\gamma+\alpha \theta}
$$

Hence by the election of γ and by minimality we obtain $C_{n}^{1-\theta} \leq C(p, \alpha) 2^{\theta}$, and the conclusion of the lemma holds.

The theorem follows now from the estimate we achieved in Lemma 3 and by Lemma 1. Indeed, given any $\alpha>1 / p-1 / 2$, if D is the ellipsoid associated to B by Lemma 3 , we have

$$
\begin{aligned}
n^{\alpha} e_{n}(D \rightarrow B) & \leq \sup _{k \leq n} k^{\alpha} e_{k}(D \rightarrow B) \leq C(\alpha, p) \sup _{k \leq n} k^{\alpha} d_{k}(D \rightarrow B) \leq C(\alpha, p) \sup _{k \leq n} k^{\alpha} \frac{n^{\alpha}}{k^{\alpha}} \\
& =C(\alpha, p) n^{\alpha}
\end{aligned}
$$

and so, $e_{n}(D \rightarrow B) \leq C(\alpha, p)$. On the other hand just take $k=n$ in Lemma 3 and so, $e_{n}(B \rightarrow D) \leq$ $C(\alpha, p)$.

Finally observe that since the constant $C(\alpha, p)$ depends only on p and α and we can take any $\alpha>1 / p-1 / 2$ the thesis of the theorem as stated inmediately follows.

3. Concluding remarks

We conclude this note by stating the corresponding versions of a) Blaschke-Santaló, b) reverse Blaschke-Santaló and c) Milman ellipsoid theorem, cited in section 1, in the context of p-normed spaces.

Proposition 1. Let $0<p \leq 1$. There exists a numerical constant $C_{p}>0$ such that for every p-ball $B \subseteq \mathbb{R}^{n}$,

$$
C_{p}\left(s\left(B_{\ell_{2}^{n}}\right)\right)^{1 / p} \leq s(B) \leq s\left(B_{\ell_{2}^{n}}\right)
$$

and in the second inequality, equality holds if only if B is an ellipsoid
Proof: Denote by \hat{B} the convex envelope of B. Since $\hat{B}^{\circ}=B^{\circ}$ we have $s(B) \leq s(\hat{B}) \leq s\left(B_{\ell_{2}^{n}}\right)$. If $s(B)=s\left(B_{\ell_{2}^{n}}\right)$, then \hat{B} is an ellipsoid. We will show that $B=\hat{B}$. Every x in the boundary of \hat{B} can be written as $x=\sum \lambda_{i} x_{i}, x_{i} \in B, \sum \lambda_{i}=1$; but since \hat{B} is an ellipsoid, x is an extreme point of \hat{B} and so $x=x_{i}$ for some i that is $x \in B$. This shows $B=\hat{B}$ and we are done.

$$
\begin{aligned}
& \text { For the first inequality, } B \subseteq \hat{B} \subseteq n^{1 / p-1} B \text { easily implies }\left(\frac{|\hat{B}|}{|B|}\right)^{1 / n} \leq n^{1 / p-1} \text { and so, } \\
& \qquad \begin{aligned}
s(B) & =\left(|B| \cdot\left|B^{\circ}\right|\right)^{1 / n}=\left(|B| \cdot\left|\hat{B}^{\circ}\right|\right)^{1 / n}=\left(\frac{|B|}{|\hat{B}|}\right)^{1 / n}\left(|\hat{B}| \cdot\left|B^{\circ}\right|\right)^{1 / n} \geq \frac{s(\hat{B})}{n^{1 / p-1}} \\
& \geq \frac{C s\left(B_{\ell_{2}^{n}}\right)}{n^{1 / p-1}}=C n^{-1 / p}=C_{p}\left(s\left(B_{\ell_{2}^{n}}\right)\right)^{1 / p}
\end{aligned}
\end{aligned}
$$

The left inequality above is sharp since $s\left(B_{\ell_{p}^{n}}\right)=C_{p}\left(s\left(B_{\ell_{2}^{n}}\right)\right)^{1 / p}$. The right inequality is also sharp since every ball is a p-ball for every $0<p<1$. And it is sharp even if we restrict ourselves to the class of p-balls which are not q-convex for any $q>p$, as it is showed by the following example: Let $\varepsilon>0$ and C_{ε} be a relatively open cap in S^{n-1} centered in $x=(0, \ldots, 0,1)$ of radius ε. Write $K=S^{n-1} \backslash\left\{C_{\varepsilon} \cup-C_{\varepsilon}\right\}$. The p-ball p-conv (K) is not q-convex for any $q>p$ and we can pick ε such that $\frac{s(p-\operatorname{conv}(K))}{s\left(B_{\ell_{2}^{n}}\right)} \sim 1$.

Observe that the left inequality is actually equivalent to the existence of a constant $C_{p}>0$ such that for every p-ball $B,\left(\frac{|\hat{B}|}{|B|}\right)^{1 / n} \leq C_{p} n^{1 / p-1}$ and by Lemma 2 iv), this is also equivalent to the inequality $N(\hat{B}, B) \leq C_{p} n^{1 / p-1}$.

With respect to the Milman ellipsoid theorem we obtain
Proposition 2. Let $0<p<1$. There exists a numerical constant $C_{p}>0$ such that for every p-ball B there is an ellipsoid D such that $M(B, D) \leq C_{p} n^{1 / p-1}$.

Proof: Given a p-ball B let D be the Milman ellipsoid of \hat{B}. Then,

$$
\begin{aligned}
M(B, D) & =\left(\frac{|B+D|}{|B \cap D|} \cdot \frac{\left|B^{\circ}+D\right|}{\left|B^{\circ} \cap D\right|}\right)^{1 / n} \\
& =\left(\frac{|\hat{B}+D|}{|\hat{B} \cap D|} \cdot \frac{\left|\hat{B}^{\circ}+D\right|}{\left|\hat{B}^{\circ} \cap D\right|}\right)^{1 / n}\left(\frac{|B+D|}{|\hat{B}+D|}\right)^{1 / n}\left(\frac{|\hat{B} \cap D|}{|B \cap D|}\right)^{1 / n} \\
& \leq M(\hat{B}, D)\left(\frac{|\hat{B} \cap D|}{|B \cap D|}\right)^{1 / n} \leq C_{p} n^{1 / p-1}
\end{aligned}
$$

The bound for $M(B, D)$ is sharp. Indeed, if there was a function $f(n) \ll n^{1 / p-1}$ such that for every a p-ball B there was an ellipsoid D with $M(B, D) \leq f(n)$, then

$$
\frac{s\left(B_{\ell_{2}^{n}}\right)}{f(n)}=\frac{s(D)}{f(n)} \leq\left(|B \cap D| \cdot\left|B^{\circ} \cap D\right|\right)^{1 / n} \leq s(B)
$$

and we would have, $s(B) \geq \frac{s\left(B_{\ell_{2}^{n}}\right)}{f(n)} \gg n^{-1 / p}$ which is not possible.
Acknowledgments. The authors are indebted to the referee for some fruitful comments which led them to improve the presentation of the paper.

References

[B-L] Bergh, J. Löfström, J.: Interpolation Spaces. An Introduction. Springer-Verlag, 223. Berlin Heildelberg (1976).
[B-M] Bourgain, J., Milman, V.D.: On Mahler's conjecture on the volume of a convex symmetric body and its polar. Preprint I.H.E.S., March 1985.
[Br] Brunn, H.: Über Ovale und Eiflächen. Innaugural dissertation. München 1887.
[Ca] Carl B.: Entropy numbers, s-numbers, and eigenvalue problems. J. Funct. Anal. 41, 290-306 (1981).
[G-K] Gordon, Y., Kalton, N.J.: Local structure for quasi-normed spaces. Preprint.
[Ja] Jarchow, H.: Locally convex spaces. B.G. Teubner Stuttgart, (1981).
[Ka] Kalton, N.: Convexity, Type and the Three Space Problem. Studia Math. 69, 247-287 (1980-81).
[K-S] Kalton, N., Sik-Chung Tam: Factorization theorems for quasi-normed spaces. Houston J. Math. 19 (1993), 301-317.
[K-P-R] Kalton, N., Peck, N.T., Roberts, J.W. : An F-space sampler. London Math. Soc. Lecture Notes 89. Cambridge Univ. Press. Cambridge (1985).
[Lu] Lusternik, L.A.: Die Brunn-Minkowskische Ungleichung für beliebige messbare Mengen. C.R. Acad.Sci.URSS 8, 55-58 (1935).
[Mil 1] Milman, V.D.: Inégalité de Brunn-Minkowsky inverse et applications á la théorie locale des espaces normés. C.R. Acad.Sci.Paris 302,Sér 1, 25-28 (1986).
[Mil 2] Milman, V.D.: Isomorphic symmetrizations and geometric inequalities. In "Geometric Aspects of Functional Analysis" Israel Sem. GAFA. Lecture Notes in Mathematics, Springer, 1317, (1988), 107-131.
[Min] Minkowski, H.:Geometrie der Zahlen. Teubner, Leipzig (1910).
[Pe] Peck, T.: Banach-Mazur distances and projections on p-convex spaces. Math. Zeits. 177, 132-141 (1981).
[Pie] Pietsch, A.: Operator ideals. North-Holland, Berlin 1979.
[Pi 1] Pisier, G.: The volume of convex bodies and Banach Space Geometry. Cambridge University Press, Cambridge (1989).
[Pi 2] Pisier, G.: A new approach to several results of V. Milman. J. reine angew. Math. 393, 115-131 (1989).
[Ro] Rolewicz, S.: Metric linear spaces. MM 56. PWN, Warsaw (1972).
[Sa] Santaló, L.A.: Un invariante afín para los cuerpos convexos de n dimensiones. Portugal Math. 8, 155-161 (1949).
[T] Triebel, H.: Relations between approximation numbers and entropy numbers. Journal of Approx. Theory 78, (1994), 112-116.

[^0]: * Partially supported by Grant DGICYT PS 90-0120

