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AN EXPLICIT EXPRESSION FOR THE IV,
FUNCTIONALS OF INTERPOLATION

BETWEEN LP SPACES

JESÚS BASTERO * , YVES RAYNAUD AND M . LUISA REZOLA**

Introduction and Notation

When dealing with interpolation spaces by real methods one is lead to com-
pute (or at least to estimate) the K-functional associated to the couple of
interpolation spaces . This concept was first introduced by J.Peetre (see [8],
[9]) and some efforts have been done to find explicit expressions of it for the
case of Lebesgue spaces . It is well known that for the couple consisting of Ll
and L°° on [0, oo) K is given by K(t ; f, L1 , L°°) = f0 f* where f* denotes the
non increasing rearrangement of the function f.

In [7] Nilsson and Peetre computed the K-functional also between spaces
LP and L9 when 1 _< p < q < oo . More recently the two first named authors
obtained an explicit expression for a suitable modification of the K-functional
for the case (LP, LM) where LM stands for an Orlicz space (see [1] ) .
The aim of this paper is to answer a question raised by J . Peetre to the

authors and to extend the results in [1] and [7] for the more general case
of the K,.-functionals between LP spaces . The notion of K,.-functional was
introduced in [4] by Holmsted and Peetre obtaining also some estimates for
those functionals between general compatible couples of interpolation spaces .
We shall write LP for the Lebesgue space LP([0, oo» . For f E LP + L9,1 <_

p < q < oc, t > 0 and 1 < r < oo we define the Kr-functional by

K,(t ; f) = inf (¡¡gil' + t r 11 hilr) l/r

where the infimum runs over all possible decompositions f = g + h with g E LP
and h E L9 . (Obviously K,,, will mean

K,>,> (t ; f) =infmax{ligJ I P ,ti jhJ l .})

Note that r = 1 corresponda to the classical definition of K- functional . The
reader is referred to [2], [3] and [9] for background on interpolation spaces .

*Research partially supported by CAICYT 0804-84 and DGICYT PS87-0338
**Research partially supported by CAICYT, PB 85-0338
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Clearly the K,.-functional defines a rearrangement invariant norm on LP -F L9
equivalent to the natural one . Hence K,(t ; f) = K,(t ; f*) and this allows us to
restrict ourselves to non negative and non increasing functions f E Lp -f- L9 .

The paper is divided into three sections and one appendix . Section I is
devoted to show the existence of extremal functions which minimize the'Kr -
functionals . In section II we give a procedure to get such extremal functions
for the cases 1 < r < oo and finally the case r = oo is considered in section
III . In the appendix we introduce and compute the functionals K,, ,, and Kr 9 .
We apply these results to the isometric problem of interpolation between the
couple of spaces (LP ,L9 ) .

Let us mention that the method we use in sections II and III is actually a
simplified version of the calculus of variations, but we shall include some proofs
for the sake of completeness . As it happens in [1] and [7] the solutions for p = 1
or p > 1 are essentially different . In the case p = 1 the extremal decomposition
of f is achieved by a horizontal slicing of the function f .

I . Existence of extremal solutions

In the sequel 1 _< p < q < oo and f will denote a non negative and non
increasing fixed function on [0, oo) . It is very easy to see that

where the infimum is taken over all functions g E LP with 0 < g < f .
Let g be a non negative measurable function on [0, oo) such that 0 <_

We define the functional <P(g ; f ; t ; r) or simply ~¿(g) by

max{11911P,tilf -911 9},

It is clear that 0 < (D(g) < oo and

Kr(t ; f) = inf (liglir + tr ilf - 9,,y)lIr

Kr(t ; .f) = inf {¿(9)1/r;0 < 9 < .f,9 E LP }

The main result of this section is the following theorem

¡f1<r<oo;
if r = oo .

9 < f .

I.1 Theorem . Let 1 _< r <_ oo and f E LP + L9 .

	

There exists a non
increasing function g E LP, 0 <_ g <_ f, such that Kr (t ; f) = $(g) l /r.

	

If
1 < r < oo , this function g is unique and f - g is also non increasing .

In order to .prove this theorem we need several lemmas . We begin by estab-
lishing the existence of extremal solutions .
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1.2 Lemma.

	

There exists a function g E LP, 0 < g < f, such that K,(t ; f) _q>(g )1/r .

Proof.. Let a be defined by a = inf{,¿(g);0 _< g <_ f, g E LP} .

	

We can
choose a sequence (gn)n in LP such that 0 < 9n < f and a = lim~-,, 4>(gn ) .
As (f - g),, is a bounded sequence in L9 we may suppose, by passing to
subsequence if necessary, that (f -gn )n converges weakly to a function h E L q .
Then (gn)n is a weakly Cauchy sequence in LP and so w-limgn = f -h E LP .
Hence if g = f - h we have

~¿(g) < liminf 119n11p +trliminf 1If -9n1Iq = li,~¿(gn) = a.

The same arguments can be modified for r = oo .
Remark . Let us point out that the same ideas used in preceding lemma

may be applied to K,-functionals between a larger class of interpolation spaces .
Actually, if (A0 , Al ) is a compatible couple of Banach spaces let us define Kr
on Ao + A 1 by

K,(t ; f) = inf (11911Á', + trilhIIA,)1/r
where the infimum runs all possible decompositions f = g + h with g E Ao and
h E Al . If we suppose that Ao is weakly sequentially complete, A1 is reflexive
and Aá n Ai is dense in A*, then there exist g E Ao and h E A1 such that
f =9+h and K,(t;f) = (11911Á o +tr1Ih1ir,) 1/r

1.3 Definition. A non increasing function g in LP is an extrema] solution
of the functional K,(t ; f) if 0 <_ g < f and Kr(t ; f) = ¿(g)1/r (Kr(t ; f) = (p(9)
if r = oo) .

Next we will study the uniqueness of the extrema] solutions .

1.4 Lemma. Le¡ 1 < r < oo .

	

If Kr(t ; f) = ¿(91 )1/r = <P(92 )1/r , then
91 = 92-

Proof.. It is very easy to check that the function g = 91
2 g2 also verifies

Kr(t ; f) = ~¿(g)1/r for all 1 <_ r < oo . Indeed, by using Minkowski's inequality
we have

,¿(9)1/r _< 1 [(119111,+119211,)r+(tllf-911Iq+tllf-92jjq)
r [ 1/r

< 1 [x(91_	)1/r + 4>(92) 1/r ] = Kr(t ; f)

and then 1191 + 9211, = 119111, + 119211� 11(f - 91) + (.f - 92)1I9 = IIf - 9111 9 +
Ilf -9211q-

If 1 < r < oo the vectors in R2 (1191 11,, tI1f - 91 I1 q ) and (11921I,, t11 f - 9211 q ) are
also colinear . Since Lq is strict1y convex (q > 1) we obtain that, for instance,
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f - 91 = A(f - 92) for some A > 0 . Thus, 11911¡p = X119211, and oD(g1) = Ar(P(92)
which implies that A = 1 and consequently g1 = 92-

Suppose now that r = oo .

	

We realize that K,,~(t ; f) = 4>(g) implies that
J l9IJp = tJ ~f - 9 JJq . Indeed, if it were JigJip > tJ If -9Jj9, we choose some positiva
a such that the set A = {x E [0, oo) ; g(x) > a} has m(A) > 0 . Take 0 < S small
enough verifying

tilf - 9liq < tilf - 9+áXAliy < 119 -6XA11p < liglip

Hence $(9 - 6XA) = 119 - 6XA1 ¡p < (P(g) and consequently K,,~(i ; f) < ~¿(g) .
(An analogous argument works if we suppose liglip < tilf - glw) .

Let 91,92 be two functions in Lp such that K~(t; f) = <P(91) = <P(92) . We
may repeat the argumenta used for 1 < r < oo and we obtain

(

91
2

92 ) <
1 max{li91ilp + 119211p,tilf - 91lw +tilf - 9211}

We therefore have lif - 91 + f - 9211,

	

=

	

l if - 91 i l e + l i f - 9211, and then
f - 91 = A(f - 92) which also implies g1 = 92 .

Remark. In the case r = 1 different solutions could be obtained . We realiza
that if g1 and g2 are two different solutions any other function g in the segment
defined by g1 and 92 is also a solution .

1.5 Lemma. i) If 0 <_ g < f then 0 <_ g* <_ f and (P(g*) < <P(g) (g* is the
non increasing rearrangement of g) . ü) If the functional K,(t ; f) has only one
extremal solution g then f - g is non increasing .

Proof. i) We apply the proposition 1 of [6] (which is also valuable in the
interval (0, oo) ) and then we have

a

This implies that Jif - g* li q <_ l i f - 9I l, and so <D(g*) < ~¿(g) .

ii) If K,(t ; f) = ~¿(g) then g = g* . The function g1 defined by g1 = f-(f-g)*
satisfies -P(g1) _< $(g * ) by i) . Thus g1 = g* and so f = g* '= (f - g)* which
implies that the function f - g is non increasing .

Remark. The lemma is also true if we consider the corresponding Kr func-
tional between a couple of rearrangement invariant function spaces .

Proof of the theorem L1 : It is obvious from the preceding lemmas .
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II . Determination of the extrema¡ solutions
when 1<r<oo

The main tool for this part is the following lemma.

II.1 Lemma. Let g be an extrema¡ solution of K,(t;.f) and assume supp
= [0, a], 0 < a < oo .

	

The following assertions are tríe :
i) Either g < f a.e . on supp f, or r = 1 and g = f, a.e . on supp f.

ii) If p > 1, either 0 < g(x) and g(x)p-1 jjgjjr -r = tr[f(x) - g(x)]q-1[lf -

g lIr-q a. e .

	

on supp f , or r = 1 and g = O.
iii) If p = 1, a > 0 and g :~ f then a < oo and f(x) - g(x) = constant =

A > 0, a. e.

	

on [0, a], where a and A verify

(fa

	

r-1

	

r

	

00 . (rI9)-1
f - a~l

	

trñ9_

	

-1 I a~q +
1

	

fq]

Furthermore, if r = 1, then a < tq' (q' is ¡he conjugate exponen¡ 4+Q, =
1) and a = [tq' - a]-1IgIlfX[a,oo)lIq

iv) If g = 0, then r = 1 .

	

Moreover, if p = 1 then f E Lq f1 L°° and
tq

'
~~gllfll . <- Ilfllq .

v) If g = f (r = 1) and p = 1 then length supp f = b < tq' .

Proof. i) Assume that m{x ; f(x) = g(x)} > 0.

	

Then there exists n E [®[
such that Bn = {x E supp f ; l/n < f(x) = g(x)} and m(Bn ) > 0. Let cp be
the function defined by cp(S) = 4>(gXB~ + (f - b)XBn) for 0 <_ b < 1/n. As
c,(0) = 4>(g) and W'(0+) < 0 we necessarily have that r > 1 and f = g .

ii) Let An = {x E supp f; g(x) = 0, f(x) > 1/n} and let W(ó) = (P(9 + 5XA� )
for 0 < b < l/n, n E N. If r > 1 or f 7~ g the same reasons as before imply that
m(An) = 0, and so, 0 < g a.e . on supp f. Consider now any measurable set A
contained in supp f, with 0 <_ m(A) < oo . The function cp(b) = <I>(9 + áXA)
has its minimum in S = 0, hence yp'(O) = 0 ( note that p > 1 ) . Thus

f
A

l l9I I P-I lgil -1 - tr l lf - 9l l q-' If - 91q -1 = 0

and then ii) follows since A is arbitrary.
iii) Let A be any compact interval contained in [0, a) . Let cp be the function

defined by W(ó) = 4>(g +ÓXA) for Ial < inf{f(x) ; x E A} . It is clear that W'(O)
does exists and actually W'(0) = 0 . Therefore we obtain

- trllf - 9119- qlf - 9]q-1 = 0.

Since this expression is true for any compact interval contained in [0, a)
we deduce that f - g = constant , a.e .x E [0 ; a] .

	

If A = f(x) - g(x), then
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g = (f - A)X(o,a] and consequently a and A have to verify the equation (*) .
Note that a < oo as the function f - g E Lq . If r = 1 we easily compute that

1

	

t
ía

	

0o ( , ) , j (119)- 1

-f- ~

and then (tq' - a)Aq = f:° f q which implies iii) .
iv) If g = 0 is an extremal solution, then f E Lq . We repeat the preceding

arguments by considering now the function cp(ó) _ ~(SXf~ ~) where [c, d] C_

supp f and 0 < S < f(d) . Since cp has the minimum in b = 0, cp'(0+) >- 0 and
hence

d

0 <

	

lim rár-1 (d - c)r1P - rtr

	

f,-1 l lf i l q -q
6-.0+ c

what implies that r = 1 .

	

Ifp = 1 we therefore obtain 1 > ti 1f l .iq-qf(x) a.e . on
supp f .

v) If g = f(r = 1) similar arguments to those appearing in iv) show v) . This
concludes the proof of the lemma .

Next we will study the case p > 1 .
II.2 In view the preceding lemma we have to consider the'class of functions

g verifying : i) g E LP, f - g E Lq,

ii)O<g< f and

trllf - gllq -q [f(x ) - g(x)lq-1 = llglir-Pg(x)P-1

a.e . on supp f .
Let A denote the class of functions satisfying i) and ii) . It is very simple to

check that for them

q>
(g) = trllf - 9li q

- q 1 f(f - g)
q-1

= llgl1P-P 1 fgP-1 .

q-1
Using the strict1y decreasing function h defined by h(y) - (f(x) -

y)q-1

yP-1

0 < y < f(x), we see that the following facts are true : i) If 9 E A, g is non
increasing . ii) A is totally ordered . Indeed, let 91, 92 be two elements in A and
write Mi = 1lgi l lr-P l if -9i l l9-r, i = 1, 2 . It is clear that M1 = M2 ( respectively
M1 < M2) implies g1(x) = 92(x) a.e.x E suppf (respectively g1(x) > 92(x) a.e .
x E supp f) . Furthermore, for q > r, the inequality g 1 > g2 yields M1 > M2 .
Hence the set A has only one element which is necessarily the unique extremal
solution of Kr(t ; f) .

Let now assume p < r < q .

	

If g denotes the inf A we are going to prove
that g = min A and that g is the unique extremal solution of K,(t; f) . Indeed,
we realize that for any two elements of A, g1 < 92 we have 4)(g1) < <P(92) .
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Let g be defined by g(x) = inf {g(x); g E A} E LP

	

(LP is order continuous,
see [5}) . Define a = i ff IIgil, and let (gn)n be a sequence in A such that

g EA

II91 I Ip < . . . . . -< I I9n I Ip < . . . . . -> a .

	

Therefore 91 >_ 92 >- . . . . . . . . . . > 9n > . . . . > 0 .
Since trll f - gnll' < 4)(gn) < <D(gl) we have that go = limg,n E LP and
f - go E Lq . By passing to the limit in 11.2 . it is easily checked that go E A ,
too. Eventually we conclude that g = go E A.

We summarize all these facts in the following theorem

11.3 Theorem. The case p > 1.
i) If r >_ q then the caass A has only one element which is the unique

extremal solution of Kr (t ; f)-
fi) If p < r < q then the least element of A is the unique extremal solution

of K,(t ; f) .
iii) If 1 < r < p we know that the unique extremal solution of Kr(t ; f) is an

element of A.
iv) If 1 = r < p ¡he solutions verify ¡he equation

t[f(x) - 9(x)]q-1 I Ig1Ip-1 = g(X)P-, I If - 9I I9 -1

Now g could be equal to 0 or f. Furthemore the solution is unique except
if f = AX[O a] . In this case t = al/p-1 /q and K, (t ; f) = Aal/P.

Moreover in ¡he four cases, if g is an extremal solution we have

1/r

	

1/r
I1r(tif) = II9IIp-(plr)Ufgp-11

	

= tllf -9IIq-(qlr) (1 f(f - 9)
q-11

Proof.. We only have to prove the last part of iv) . If 91 7É 92 are extremal
solution of Kl (t ; f) then all the points of the segment [91,921 are extremal
solutions : So we may suppose gl :~ 0 7É 92 and f - gl 7É 0 :~ f - 92 . Since LP
and Lq are strictly convex spaces the same reasons appearing in the lemma I.4
say that gl = ag2 , f - 91 = b(f - 92) for positive a, b . Therefore f = cg2,
for some c > 1, and thus tg2(x)q-p = 1192119-1II92IIp-1 a.e . on supp f. Hence
f = AX[0 a], \ > 0 and t = al/p-1/q, M

11 .4 Let us now consider the case p = 1 . We shall denote by b =length of
supp f < oo . As it appears in lemma II .1 ., the extremal solutions of K,(t ; f),
g, have the following expression g = (f - A)X[o,a] with 0 < a < oo . If a > 0
then A verifies the equation IL1-iii)-(*) . We define the function H(a, A) by

a

	

r-1

	

00 1(rlq) - 1

H(a, A) _ ~~

	

f-aA~

	

-trAq-1 [aAq -F J

	

f
qJ

	

(r > 1)
o

	

a
00 (1/q)-1

H(a, A) = 1 - tAq-1
r
I aAq +~

	

f
qJ

	

(r = 1)
a
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for0<a<_b,0< .~<_ 1 fo f,r>1and0<A<oc,r=1 . Ifaisa
fixed positive number the function H(a, A) is strictly decreasing in the variablea
.~ and H(a, 0) > 0 .

	

On the other hand, H(a, 1

	

f) < 0 in the case r > 1,a lo
and for r = 1 lima_,

	

H(a,A) < 0 if and only if a < t9' . Hence, the equation
H(a, a) = 0 has only one solution A = \a for any 0 < a <_ b (case r > 1) and
for any 0 < a < min{t 9', b} (case r = 1) .
When a = b and r = 1 the corresponding equation H(a, A) = 0 is then 1 =

tb ll9-1 and so, this equation has solution if and only if t9 ' = b . Furthermore,
if g is an extremal solution of the functional KI(t ; f) with a = b, then b < oo,
t9 ' = b, Kl (t ; f) = 1 lf 11 1 (all the functions f - a are extremal solutions of the
functional for 0 <_ A <_ f(b- ) ) and H(b, f(b)) = 0 . In order to determinate the
possible extremal solutions g we only have to check the value of a equal to the
length of supp g . The main tool for computing this value a is the following
Lmma

11.5 Lemma. Leí g be an extremal solution of K,(t ; f) and leí [0, a] _
supp g, a > 0.

	

Then f(a+) < Aa < f(-_) .

Proof.	_Sinceg = (f - Aa)X[a,a~ > 0 we find Aa < f(a - ) . If Aa < f(a+), we
would have \a < f(x) for all x E (a, c) . By considering the auxiliary function
M) = '¿(9 + 6X[a,c]) defined for 0 < b < \a, we easily would check that

cp'(0+) = rtrl if - gil'-9 f

	

(
,á-1 - .f9-1 ) .< 0

a
and, consequently, g would not be extremal solution for the functional K, . (t ; f)
which contradicts our assumption . Hence the Lmma follows .

11.6 Remark. As an immediate consequence of Lemma 11.5 . we have to
study the set I = {x E (0, b] ; H(x, f(x - )) _< 0 <_ H(x, f(x+))}, because the
length of the support of the possible non null solutions belongs to I . Then we
define the function F(x) = H(x, f(x)) defined for 0 < x _< b . The following
properties will allow us to compute easily the extremal solutions of K,(t ; f) .

II.7 Lemma. Thefollowing properties are trae :
i) F( .) is non decreasing . Furthermore if F(xl) = F(x2) with x 1 < x2

then f is constant in the closed interval [x1, x2] .
ii) F(x- ) = H(x, f(x-» and F(x1 ) = H(x, f(x+)) .
iii) If xl < x2, H(xl, .f(xl» :5 H(x2, .f(x2))-
iv) I is either empty or an interval and the function f is constant on its

interior . Furthermore I = {x ; F(x - ) < 0 < F(x+)} .

Proof. i) Let xl < x2 be two positive numbers . Since f is non decreasing we
have that z

x2f(x2) T XIf(x1) C f(x2)(x2 - xl) <

	

f
xl



and therefore

If r > q it is also clear that

xlf(xl) q + f

	

fq > xl f(x1) q +(x2 - xl)f(x2) q + f

	

fq > x2f(x2)q + f

	

fq
xt

	

x 2	x 2

Hence

f(X1)q-1 IX,f(X1)q +

THE K, . FUNCTIONALS OF INTERPOLATION

	

105

xt

	

r-1
f xlf(xl)

0

fq

In the case 1 < r < q we realize that

(rIq) - 1

f(xl) q
1

r
Ixlf(xl)q +

	

fq1

	

_
L

	

x 100
f xl)r-1

xl
+ roo ( f

L

	

~q~(rIq)-1

Jx t f(xl)

f(x2)r-1 1x,
+J 00

	

f(fl))q](r/q)-1

x2 )r-1 ~x2 + lo

	

f

	

ql

(rlq)- 1

x2 f(xl)

f

	

2)r-1 1X2
+ Jx2

	

(f(f
2))q](rlq)-1

and thus the first part of i) is proved . If F(x1 ) = F(x2) and r > 1 we have, in
particular, that

x2f(x2) - xlf(x1) =

for any x, x l < x < x 2 . Then f(x) = f(X1) = f(x2) and f is constant in
[XI, x2] .

J.`1,2

f
q

Supposenowthat r =1 ,thenwefind
J t

( f(x1))= x2 -x1 and therefore

we have that f is also constant in [XI, x 2 ] .
ii) This property is easily computed from the special expression defining the

function F(.) .
iii) H(x l , f(xi )) =

	

lim F(z) <

	

lim F(z) = H(x2, f(x2).

<_

[ ¡x2f

- x2f(x2)
0

~

~ f(x2)q-1 IX2f(X2)' +

	

fqJx2

z
f ? (x-xl)f(x)+(x2 -x)f(x2)
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iv) Let x l, x2 be two different point of I, x1 < x2 . By applying iii) we find
that H(z, f(z)) = 0 for all x l < z < x2 .

	

Then the set I is an interval and

consequently f is constant in I . The last assertion in iv) is a consequence of

11.8 Remark. If we denote by gz the function gr = (f -

	

where Az
0

is the unique solution of H(z, A) = 0, then gz = (f - f(z))X[o,z] for all z E I .
0

Hence gz is the same function and therefore 4>(g r ) is constant for all z E I .

11.9 Theorem.
i) If F(0+) >_ 0 then r = 1,g = 0 is the unique extremal solution of

1
the functional Kl . In this case f E L9 n L°°, IIflI9 < Ilflloot9I9 and-
Kj(t; f) = tilfli9

ii) If r = 1, lim a-o + F(x) <_ 0 then b <_ t9' and g = f is extremal solution
of the functional. Now Kl (t ; f ) = I If 111

iii) If either r = 1 and lim a-0 + < 0 or r > 1 and lim x -b- F(x) > 0 there
exists an unique extremal solution g for ¡he functional K,(t ; f) .

	

This
function g is defined by g = (f - A)X[a,a] where a = inf I (I :~ 0) .

	

The
number A is the unique solution of H(a, A) = 0 and f(a+) <_ A <_ f(a- ) .
The expression for K,(t ; f ) is

Kr(t ; f)

	

\r
+ tr (aA' +

	

r~y l/r

- [ (la
f - aAl

	

foo

fq)0

	

a

Proof. This is a consequence of the preceding results, namely, II .1-iii),iv), v),
II .4, 11 .7 and II.8 . 9
Remark. i) When r = 1 and F(x) < 0 for all x < b then b < t9' and f is

the unique extremal solution of the functional . If F(x) = 0 for all x E [a, b],
then the function g = (f - A)X[0 a] is also extremal solution for the functional
(A is the corresponding solution of the equation H(a, A) = 0) .

ii) The fact that the extremal solutions for the K,-functional between Ll and
L9 are horizontal.slicings of f could be extended to the more general caseof the
functional K,(t ; f, L 1 , L), 1 < r, where L is a strictly convex rearrangement
invariant space on [0, oe) . Indeed, if g is an extremal solution, g and f - g are
non increasing (see I .2, I .4 and I .5) . Then {x ; f(x)-g(x) > 0} = [0, a) . If c < a
we have f(x) - g(x) > e on [0, e) for some c > 0 .

	

For every point x E [0, e)
there exists an interval Jx such that x belongs to Jz and g is constant on Jx .
If this were not true let

i

2e

\
gE = gX[x-"X« , + (2e J -E g

/
X[x E,x+E1

Since L is strictly convex g :~ gE would imply 4>(g,) < ~P(g) what contradicts
our assumption on g . Eventually an argument of compactness implies that the
function g is constant on [0, b), for all b < a and so, on [0, a) .



It is straightforward to establish that Koo(t ; f) = lim K,(t ; f) . This expres-
r-loo

sion would allow us to obtain the equation for the functional K,,, by pass-
ing to the limit in the corresponding extremal solutions for K,(t ; f) . We
prefer to compute directly the solution by using again the calculus of vari-
ations . We already know that if g is the extremal solution for K,, then
Koo(t;f)= llgllp = tllf-gll9 > 0 .

The following lemma is the crucial tool for determining the solution when
p>1 .

111 .1 Lemma. Let p > 1, and leí g be an extremal solution of the functional
K.(t ; f) . Then 0 < g(x) < f(x) and

a . e . x on supp f .

THE K,. FUNCTIONALS OF INTERPOLATION

	

107

111 . The case r = oo

(f(x) - g(x))9-1 = g(x)p ll gll p f(f - g)9-Ig

Proof.. Let A and B two disjoint measurable sets of positive and finite mea-
sure, contained in supp g . The equation

llg+ 6XA+hXBllp = tllf - (g+ 6XA+t¿XB)llq

defines 6 as an implicit function 6 = 6(p) in a neighbourhood of 6 = p = 0 ; we
therefore have

6(0)=- fB [llgllp-p gp-1 + tllf - gl11-9(f - g)9-1]

fA [11911p
-pgp-1 +tllf - g19 -9(f - g)9-11

Consider now the function W(te) = llg + 6XA + PXBllp . Since this function is
Cl l and has a minimum in p, = 0 we find

0 = 40) = IlgiiP- p le(0)
IA

gp-1 +
IB

gp-1
J

.

By an easy computation we obtain

fA(f - g)Q-1 __ fB(f - g)9-1

fA g
p-I

	

fB gp-1

	

.
As this equality is true for any couple of disjoint mensurable sets in supp g, we
deduce that there exists a constant A such that (f - g)9-1 = ~\gp-1 , a.e . on
supp g . If we would take A C_ supp g and B C_ (supp f \ supp g) and repeat all
the arguments we would get that

IA(f -g)9-1 JB gp-1 = 1A gp-I JB(f -
g) 9-1 = 0 .

Therefore f = g a.e . on B which implies that supp g = supp f, and that
concludes the lemma .
We can settle the case p > 1
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111.2 Theorem . There exisis a unique extremal solution of ¡he correspond-
ing functional K,,> (t ; f) .

	

This function is the unique element which verifies
0<g< f,

(f - 9)9-1
9p_1

	

= I iglIp p f 9(f - 9)P-1

a.e.x on supp f and llgllp = tllf - 9llq-

Proof.. Let A be the class of functions in LP verifying : 0 < g < f ,

(f - 9)9_
9p_1 = 1l9IIP P f9(f - 9r1

a.e .x on supp f and 1191Ip = ti lf - 911, . The same arguments appearing in 11 .2 .
prove that A is a totally ordered set in LP . But if g 1 <_ 92 are two elements
in A, we have l ig1 l Ip < 119211p = t i lf - 9211p :5 t l l f - 9111, = 1191 I Ip and then
91 = 92 . This proves the theorem .

Next we will study the case p = 1 . For that we need the following

111.3 Lemma. Le¡ g be an extremal solution of K<,(t ; f), p = 1 . If supp
g = [0, a] then 0 < a < oo, f - g = A a .e . on [0, a], where A is the unique
solution of the equation

and f(a+) < Af(a- ) .

r

	

1/q
-aA=t

L
aAq+ f

a
f

1

Proof.. We begin by repeating the same arguments which appear in the proof
of lemma III .1 . We have to take A and B in [0, a] far enough from a, in order
to ensure that the corresponding auxiliary functions we use are defined in a
neighbourhood of p = 0 . We obtain that f - g = A a.e . x on [0, a] (we do not
know yet if A > 0 ; in any case it is clear that 0 < a < oo ) . Since g = (f-A)x[o a]
and 1Ig111 = t11f - g1lp, the constant A has to verify the equation before stated
that obviously has only one solution .

It is easy to see that 0 <_ A _< f(a- ) .

	

The more delicate part is to prove
the inequality A > f(a+), which actually implies A > 0 ( indeed, A = 0 would
say that supp f = supp g , f = g = 0 ) . Suppose that 0 < A < f(a+) . We
may assume A < f(x) for all x E [a, a + e] . We denote by I1 = [0, e] and by
12 = [a, a + e] ( e is small enough so that 1, C [0, a]) . The equation

119 + pxl, + 5X12111= t I If - (9 + pXI, + bxI2) I lq

defines b as an implicit function of p , b = b(p), whenever p E [po, 0] and
b(p) E [0, bol ; besides 5 E C(1 [[to, 0] . ( A special form of the classical implicit
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function theorem has to be applied for the case when the conditions are required
in the boundary of the domain. The proof may be adapted from the classical
one ) . Now

(1 + tllf - gjjq-qAq-1)
l

	

E+tllf -g11q-qJa+E fq+1

The function W(le) = 1 ig + /XXI I + 6XI,111 verifies (p'(0-) > 0 . Hence g would
not be extremal solution of the functional and thus the lemma is proved .

Consider the function
a

	

W

lIq
H(a, A) = f

	

f - aA - t IaAq +

	

fqJ0

	

a
a

for a > 0, 0 _< A < 1l f . The situation now is similar to that appearing
a o

when r < oo . The following facts could be deduced in the same way . Fixed
a

a > 0, H(a, .) is a strictly decreasing function . Clearly H(a, 1l

	

f) < 0. If a
a o

is the length of supp of g, extremal solution, H(a, 0) > 0 and so, a > a o where
a o is the unique positive real such that 11fX[0,ao]111 = tljfX[au, .]11q-

In general a < b implies that H(a, f(a- )) _< H(a, F(a+)) _< H(b, f(b- )) .
Hence we define the non empty interval I = {x E (ao, oo) ; H(x, f(x- )) < 0 <_
H(x, f(x+))} . It is easily checked that inf I = min I > a0 . Eventually we get
the solution as follows

111.4 Theorem. The case p = 1 . There exists a unique exiremal solution
of ¡he functional K,,~(t ; f) .

	

The function g is defined by g = (f - A)X[o,a]
where ao < a = min I < oo and A is the solution of H(a, A) = 0 .

	

Moreover
f(a+) < A < f(a- ) and

a

	

r

	

oo lIq
K,>. (t ; f ) = f

	

f - aA = t
L
aAq +

	

f
qJ0

	

a

Appendix

In this part we introduce the functionals K,,,, and 1G, ., and we compute them
for any function f E LP+Lq. Next we compare the monotonicity relations asso-
ciated to these functionals (see definitions below) and eventually, we shall give a
new characterization of the (1,1CP , q )-monotonicity in terms of an interpolation
theorem .

Recall that a Banach space X is said to be an intermediate space between LP
and Lq if X is continuously embedded between LP and Lq,i .e . LP n Lq -+ X �+
LP + Lq . An intermediate space X is said to be an interpolation space with
respect to (LP, Lq) if any linear operator T E L(LP) n,C(Lq) is also bounded on
X (C(A) denotes the space of bounded linear operators on the Banach space
A, see [2] and [3] for more information) .
Next r, s will be two fixed real 1 < r, s < oo and t > 0 .
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A .1 . Definitions . i) Let f be a non negative non increasing function in
LP + Lq

where the infimum is defined oven all poseible decompositions of f = g + h, g E
LP and h E Lq . The functional Kr,., is defined in a similar way bit¡ considering
only disjointly supported functions

Kr,s(ti fi LP , Lq) - Kr,s(ti f) = Jif, (llg[lp + tllhllq)'
gnh=0

ii) An intermediate space X is (C, K,.,,)-monotone (respec. (C, K,,,)-monotone)
if given f E X, g E LP+Lq such that K,,,(t ; f) > K,,,(t ; g) (respec. Kr,,(t ; f) >
K,,,(t ; g)) for all t > 0, then g E X and ligllx < Cllf11X .

If r = p, s = q we have the KP j q-functional used by Sparr (cf. [11]) which
is nothing but the L-functional appearing in [10] . We begin by stating the
results corresponding to the K,,,,-functional and we will not prove the theorems
because the proofs are similar to the previous ones .
A function g E LP is an extremal solution for K,,,(t ; f) if

	

f) = l lgl lp +
tllf - gll .,
We consider first the case p > 1 . Let A be the caass of the functions g which

verify : i) g E LP, f - g E Lq, ii) For almost every x E suppf, 0 < g < f and

A is a totally ordered set .

A.2 . Theorem .

Kr,,(tifiLP,Lq) = K,,,(tif) = inf(llgllP +tllhll q )

rg(x)P- 1 ll f - gl l9-' = ts(f(x) - g(X))q-' l igl lP-r .

i) If s >_ q and r >_ p, A has only one element which is ¡he unique extremal
solution of th,e functional Kr, ,(t ; f)

ii) If s >_ r >_ p, the function g = min A is ¡he unique extremal solution of
K,,.,(t ; f)

iii) In ¡he other cases there exists an extremal solution g of Itr,,(ti f ),, such
that g E A. This extremal solution is unique except when r = s = 1, f =

AX(o,bl and t = b'IP-llq .

In the three cases

Iir,,(tif)-
3 llgllp-P fgp-1 [f - ll- r)g]

=tllf-gll q
-q
J
(f-g)q-'[f-(1 - r)g]

where g is the extremal solution of ¡he functional.



stant .

A .3 . Theorem .

definition

Now
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We consider now the case p = 1 . Let b be the length of support of f (< oo) .
We define the function F : (0, b) --, R by

z

	

r-1

	

¡,
r

	

f
q el9-1

F(x)=rU f

	

xf(x)~

	

- st Ix+l
(f(x)

This function is non decreasing and constant in the intervals where f is con-

i) IfF(0+) > 0 then r = 1, f E LpnL°° and tsilf Il~.llfllq-q <_ 1 . Moreover
g = 0 is the unique extremal solution of the functional and Kl ,(t ; f) =

tilfilq ,
ü) If s = 1 and F(x) < 0 for all x < b, then f E Ll, rilf jj r-'b' /q ' <_ t,

(b < oc) and g = f is ¡he unique extremal solution of the functional.
K,,1(t ;f) = ~~ . f~~l

iii) If s = l and F(x) = 0 for all x E [a, b], a < b, then r = 1, t = bl/q'
and g = f is extremal solution . Also ¡he function g = (f - f(a))X[o,a]
is extremal solution of the functional . Now K11 (t ; f) _ Ilf111 = ligill +

iv) In the other cases there exists only one extremal solution g = (f -

A)X[0,a], where a = sup{x E [0, b] ; F(x- ) _< 0} and A is the unique
solution of ¡he equation

s/q-1r(la
f-añlr-1=stLa+11(f)gj

a

	

r r

	

6 9/9

Kr,s(t ; f ) - r (l

	

f - aA)

	

+ t I aXq +

	

fqla

	

J

Next we are going to compute the K,,.,-functional we introduced before . By

)Cr,.,(tj) = mn llfXAIIp +tjjfXA- ljq,

where the infimum runs over all subsets A C_ suppf . The main result now is
the following

A.4 . Theorem . If f E Lp + Lq ¡he

	

functional has ¡he following ex-
pression

lCr,,(t ;f) = 0mn IIfX[0,x]IIp+ tlIfX[z,oo)IIq .
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Proof. We shall prove the theorem in three steps . To start with we shall
establish the theorem for simple functions .

n
Siep 1. Suppose that f = i: aiXI i where al > . . . > an > 0, Ii's are pairwise

i=1

disjoint intervals with length(Ii) = mi > 0 . It is quite clear that 1Cr ,9(t ; f) _
n

min cp(x), being x = (xl, . . ., xn), C = Jj[0, mil and W the continuous function
8=1

defined by

n

	

) r/P

	

( n

	

9/9
x

	

aPxi

	

+ t

	

ay (Mi - xi

Let x = (11, . . ., -in) a minimum of this function cp in C . If x EC then a

	

(x) _áxi
0, for all 1 < i <_ n . Easy computations would imply that a l = . . . = an which
is a contradiction . Thus 1 E áC and, for instante, we may assume that there
exists j (1 <_ j < n) such that Yj = Qj with Qj = 0 or = mj . Now we consider
the function

W(xl1 . . . . xj_1, x7+1, " . ., xn) = W(xly . . ., xj_1,Qj5 xj+1) . . ., xn)

defined for 0 < xi < mi, i :~ j . This function 0 attains its minimum in
(xl, . . .,

17)+l, . . ., 7n) . Repeating the argument we would obtain that there
exists another coordinate j' such that Tp = Qj, (£j, = 0 or mj,) and so on .
Eventually we obtain that there is a natural number k, 1 <_ k < n, such that
j = (Q1, . . .,Qk_1,7k,Qk+1, . . .,fn) where each 2i = 0 or mi and xk is equal to 0

a
or mk or a solution of the equation in x : OX (~1,

--.A-1,x)4+1)
. . ., £n) = 0.

In order to precise the exact form of x we realize that if x = (0, . . ., 0) or
= _ (ml, . . ., mn ) the proof of the Step 1 would be finished . So, we may suppose
-

	

(0, . . ., 0) and Y 7É (ml, . . ., rnn). Let A be the well defined positive number

A =

	

r4 [ri_1 aelii r/P-1

Let A be the set A = {i ; a ; - P >_ A} . The following lemma is the main tool
in the proof of this step .

A.5 . Lemma.

	

The set A :~ 0 . If ko = max A then

1 = (ml, " . ., mko_1, xko, 0, " . ., 0)e



where xk o = mk o if akaP > A and

	

8- (x) = 0 otherwise .
ax ko

Proof.. We know that x = (~ 1, . . .,Bk_1,xk,Qk+1, . . .,£n) for some k,1 _< k _< n .

If j :~ k let h be the real function defined by

As Pj = 0 (respectively 2j = mj) implies that h'(0+) > 0 (respec . h'(m
i

) _< 0)
it is easy to check that Pi = 0 (respec . = mj) implies that al -P _< A (respec .
al-P > A) . In the same way , if jk = 0 then ak-P _< A, if !k = mk then
aq-P > A and otherwise ak_P = A .

As x :~ (0, . . ., 0) the set A

	

~ .

	

Hence if j

	

< k0 (respec .

	

j

	

> k0 ) the
corresponding j-th coordinate has to be mj (respec. 0) . Finally we only have
to consider the different values of ako with respect to A and this concludes the
proof of the lemma .

or
By applying the lemma we have that 1C,,9(t ; f) = tilf II Q or K,,s(t ; f) = lif ji r

Hence

for some x E supp f .
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_
h(y) = ~P(~1, . . .,

i)
y, ..., xk, . . ., ~n) .

n 9 Iq
+t Cak o (mku _ xko)+ 5

a9m4/ko+1
- I IfX[0,x] I IP + ti lfX[x,-) I Iq

where x = m l + . . . + mko_1 +xko . In the there cases the Step 1 is proved .
Step 2 . Suppose now that f E L°° and the length of the support of f is

finite . We can approximate f by a non decreasing sequence of simple functions
(fn)n converging to f in the L°°-norm. We apply the Step 1 to there simple
functions fn and we get that

Kr,s(t ; fn) = IIfX[O,x � ]IIp +tijfX[x � ,oo)IIq

where xn E suppfn . Since JC r , s (t, fn) < K,,s(t ; f) by passing to a subsequence
if necessary there exists x = lim x n and thus we have

llmfn) = IifX[O,x]IIp +tiIfX[x,oo)II`

	

f) .

K,,s(t ; f) = I If X[O,x] I IP + t i l fX[z,oo) I Iq

Step 3 . If f is a general non increasing and non negative function in LP + Lq
we approximate f by a sequence of truncations of f and we apply the ideas of
the Step 2 .
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In order te determinate the point x E supp f for which

1C"-'(t; f) = 11fX[O, .J 1I P + tll fX[x,oo) 11 q

we consider the auxiliary function cp defined byUx

fP)

r/P + t C ¡oo

fq)

sI q

for 0 < x < b = length of the support of f. This function cp is continuous and
has derivative cp'(x) almost everywhere . More precisely, there exist cp'(x+) and
cp'(x - ) and they are equal except at most in the discontinuity points of f . It
is easy to check that

0 < x < b, where

A.6 . Proposition .

~I(x}) -q llfx[x,oo)11 q-qf(xt)Pl~¿(x) - f(xf q P

r9 I1fx[0, .]HP-P

pst 11f X[x,°°) 119
-q

(cp'(x :1) denotes each one of the two hand side derivatives of cp, in the same
way f(x :~) represents the two lateral limits of f) . Hence we have that if x 0 is a
point of minimum for the function W necessarily x0 = 0, or = b or f(x~)q-P >_

4>(x0) > f(xó)q-P . In particular we have the following

i) If either r >_ p and s > q or r > p and s >_ q there exists only one
point x0 E supp f for which ¡he minimum of cp is attained . Furthermore
xO = sup{x; <D(x) < f(x)q-P} and

Kr,s(t;f) = tllfx[xo, .)11 q
-q L
pg llfx[O,x"] llp

p
(x)+llfx[xo~.)ll gJ

ii) If r=p ands=q

00

t

	

¡ min x t x dx .
0

Proof.. i) Under these hypotheses ~¿ is a strictely increasing function . Let

I = {x E (0, b) ; <P(x) < f(x)q-P} .

I = 01 means that f E Lq fl L°°, r = p and llf llóoP

	

<

	

E llfllq-9 .

	

Then

'p'(x :~) > 0 for all x and then IC r ,,(t ; f) = t11f 11 q .
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If I = (0, b) then b < oo and ~p'(x}) < 0 for all 0 < x < b. So IC,,,,(t ; f) _
f P .

Otherwise cp'(xf) < 0 for all x E I and ~o'(xl) > 0 if x 11. Hence i) holds .

ii) Now ~¿(x) _

	

and this part of the proposition is easily checked .

Remark. We note that our 1C p , Q functional is exactly the corresponding )CP , q
functional used by Sparr in [11, definition (3 .1)]

Later on we shall prove that for r, s >_ 1 all the K,,,-monotonicities are
equivalent in any intermediate space between LP and L9 and that a weaker
result is true for the correspondig ICr,,,-monotonicities .

A.7 . Proposition . Let X be an intermediate space between LP and L9and
r, s >_ 1 .

	

The following assertions are trae : i) X is (1,Kr,.,)-monotone tq X
is (1, K)-monotone.

	

ü) If r >_ p and s >_ q, X is (1, K, ,,)-monotone ~-¿ X is
(1, /C,,,)-monotone .

Proof.. i) Set E the functional defined forf E LP+L9 and X > 0 by E(,\ ; f) _
inf

	

11 f - g11a . It is clear that
I Ig11P <_a

Kr,s(t ; f) =inf [A + tE(i`l/rj)9J

	

(A.7.1)

K,, (t ; f) - Ar

	

1/s

(see [11], lemma 3.3) . Then Kr ,,(t ; f) > Kr,,(t ;9) for all t > 0 if and only if
E(X ; f) > E(X ; g) for all A > 0 and hence if and only if Kj,l(t ; f) >_ Kj,l(t ; g)
forallt>0 .

ii) The proof of this part is similar to the previous one by using a suitable
modification of the functional E, namely £, defined by

£(X ; f) =

	

inf

	

1IfX[=,.)1wI1No,r311P <_a
Now the corresponding similar expressions (A.7.1) and (A .7.2) for the function-
als Kr,, and £ occur . Actually, the only thing we have to compute is that given
A > 0 with £(A ; f) > 0 there exists t > 0 such that K,,,(t ; f) = Ar + t£(,X ; f)s .

It is clear that there exists only one point y, 0 < y < length supp f, such
that lifX[o,yj I P = A and lifX[y,,,.) lI q = £(A ; f) . Since r > p and s > q we take
t =

	

rqA'
-P

	

f(y)P-9 and we apply Proposition A.6 .ps£(A ; f)8-q

Remark .

	

For r, s >_ 1 it is clear that if X is (1, 1C r, ,)-monotone => X is
(1, K,v)-monotone .
Now we recall that a lattice homomorphism is a linear bounded operator be-

tween Banach lattices which maps disjointly supported functions into disjointly
supported functions .
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A .8 . Theorem. Let X be an intermediate space between LP and Lq . X is

(1,Kp,q)-monotone if and only if the following interpolation result is true : If
T E C(LP) n G(Lq) is a lattice homomorphism then T E .C(X) and

IITIIx-x _< max{IITIILy-L", IITIILI-- .La} .

Proof. First of all we remark that both assertions imply that X is a rear-
rangement invariant function space . Suppose that X is (1, ICp q )-monotone and
that T is a lattice homomorphism such that

max{IITIILD-DI, IITIIL9-L9} _< 1 .

If f E X, since T is a lattice homomorphism we have

Kp,q(t ;Tf)

	

atnT, IIgIIP+tIlhII9 < a+h f, IIgIII+tilhII9
qAh=0

	

q^h=0

= Kp,q(t ; f)

for all i > 0 . Thus Tf E X and IITf IIx < Ilflix .
On the converse hand, let f E X and g E LP + Lq such that for all t > 0

Kp q (t ; f) >_ Kp,q(t ; g) . Applying the lemma 4.2 of [11] we obtain that for
each e > 0 there is a lattice homomorphism TE E .C(LP) n C(Lq) which verifies
TE(f) = g . Then by using the hypotheses we have g E X and

IIgllx :5 IITIIx-xllf IIx < (1 + E)IIf IIx

Since this is true for all e > 0 thus the proof of the theorem is complete .
As a consequence of this result we can establish the following characterization

of interpolation spaces with respect to the couple (LP, Lq) ; this corollary is in
essence an interpolation result

A.9 . Corollary . Let X be an intermediate space between LP and Lq . The
following siatemenis are equivalent: i) X is an interpolation space, ii) X is an
interpolation space for lattice homomorphisms .

Proof. We only have to show ii) => i) . We define a new equivalent norm II . II
on X in the following way

Mf1II =supJITf1I

where the infimum runs over all possible lattice homomorphisms T E £(LP) n

,c(Lq) such that max{IITIILD-LI, IITIIL9-L9} _< 1 . It is clear that (X,111 .111) is
an exact interpolation space for lattice homomorphisms . Thus (X,111 .111) have
to be (1, ICp , q )-monotone . Hence the result follows by applying the theorem 5.2
of [11] .
Acknowledgements . The authors are indebted to Professors J . Bergh, J .
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