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Abstract

We show that there are close relations between extremal problems in dual Brunn—
Minkowski theory and isotropic-type properties for some Borel measures on the sphere. The
methods we use allow us to obtain similar results in the context of Firey—Brunn—Minkowski
theory. We also study reverse inequalities for dual mixed volumes which are related with
classical positions, such as /Z-position or isotropic position.
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1. Introduction and notation

An isotropic measure u in R" is a positive, finite Borel measure on R” such that
/ xixj du(x) = L*6y

for all 1<i,j<n, where L is a constant.
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If K is a convex body in R” we shall say that K is in isotropic position if its centroid
is the origin and the measure u = yg(x) dx is isotropic, i.e. for some constant L

/ (x,0)%dx =I?
K

for all 0 S"~'. Given a convex body K in R" we consider the family of its positions
{t+ SK;teR" SeSL(n)}, where SL(n) denotes the family of n x n real matrices
with determinant equal to +1. It is well known that any convex body has a unique
(up to orthogonal transformations) isotropic position.

Giannopoulos and Milman associated isotropic measures to extremal positions of
convex bodies in R" as a tool to discuss an isometric approach to the study of the
different positions for convex bodies, which have been introduced in the local theory
of Banach spaces (see [6,7]).

For instance, the isotropic position of a convex body, defined above, is the
solution of the extremal problem min{ [ | + Sx|* dx; Se SL(n), 1eR"} (see [19] for
the symmetric case and [4] for the non-symmetric one).

In the same way, the euclidean ball D, is the ellipsoid of maximal volume among
all ellipsoids contained in a symmetric convex body K (John’s ellipsoid) if and only if
the identity I, is the solution of the extremal problem min{||S : /5 — Xx||} and this
situation is characterized by the existence of an isotropic measure p supported on the
contact points of K and D, (Xk represents the normed space R” endowed with the
gauge function of K). In [9] the authors characterize the extremal volume position
between two convex bodies in terms of decompositions of the identity (see [3] for a
non-convex case). These decompositions of the identity can also be understood as
the existence of some generalized isotropic measures supported on the contact pairs,
which emphasizes the close relation between extremal problems of convex bodies and
measures with isotropic-type properties.

The minimal surface position is another example of this phenomenon. If K is a
convex body, we denote by |0K] its surface area. Then K is in minimal surface area
position (i.e. |0K|<|0(SK)|, for all Se SL(n)) if and only if the area measure og of K
is isotropic. Recall that ok is the measure supported on S"~! defined on each Borel
subset 4 in $"~! as the measure of the set of points in the boundary of K whose outer
normal is in A4 (see [8,22]).

The mean width of a convex body w(K) is defined by

o(K)=2 - hg(u) do(u),

where /ix is the support function and do is Lebesgue measure on S"'. In [6] the
authors show that a ‘“‘smooth enough™ convex body K (that is, hgx is twice
continuously differentiable) is in minimal mean width position if and only if the
measure hg (1) do(u), supported on the unit sphere S"~!, is isotropic.

These last two cases are also the extreme cases which, respectively, minimize the
quermassintegrals of K, W;(K) for the values i = n — 1 and 1. In the same paper [6],
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the authors also consider the remaining cases and they obtain necessary conditions
for minimizing the corresponding W;(K).

The main goal of this paper is to extend these ideas of Giannopoulos and Milman
and to show that a similar situation occurs when we consider the dual mixed
volumes, V;(K, L), and dual quermassintegrals, W;(K). If K<R" is a star-shaped
body and ieR (not necessarily an integer), we consider the dual quermassintegral
Wi(K) defined by

WiK) = [ o ot

n
(see [13]). We will consider the following extremal problems:
max{ W;(SK),SeSL(n)} if ie(0,n),
min{ W;(SK),SeSL(n)} if i¢[0,n].

In Section 2 we study the positions of a convex body which are solutions of these
extremal problems and we show that there is a close relation between these extremal
positions and properties of isotropic type of some measures. In fact, we prove that if
ie(—o0,0)n[n+ 1,+00), the isotropy of some Borel measures on S"~! is necessary
and sufficient for a convex body K (symmetric when i>#n + 1) to be in the position
that minimizes W;(TK). If i€ (0,n) the phenomenon is not so clear and, in general,
we can only ensure that the isotropy of some measure is a necessary condition for a
convex body K to optimize W;(-), but we do not know if this condition is also
sufficient. The methods we use include general results about isotropic measures on
S"~1 (see Lemma 2.7) which allow us to characterize the solutions of some extremal
problems in the context of the Brunn—Minkowski—Firey theory (L#-mixed volumes)
introduced by Lutwak (see [13—15] and the references therein).

It is well known that inequalities like Brunn—Minkowski, or even its most
important consequence the isoperimetric inequality, cannot be reversed, as simple
examples show. However Milman in the very remarkable paper [18] proved that we
can reverse the Brunn—Minkowski inequality, up to an absolute constant, if we
consider different positions for the convex bodies, i.e., there exist positions which are
now called M-positions which allow one to reverse the inequality of Brunn—
Minkowski (see [23] for another approach to the problem using interpolation of
operators and [2] for its extension to the non-convex case).

In the same spirit, Ball [1] proved that among all the positions of a convex body,
John’s position leads to the reverse isoperimetric inequality; i.e. this is the one
position of a convex body for which the surface area is less or equal to the one of a
cube (in the symmetric case) or a simplex (in the non-symmetric one) with the same
volume.

In Section 3 we consider the same problem for dual quermassintegrals, W;(K), and
we study the corresponding reverse dual Minkowski inequalities. Apart from the
interest of these reverse inequalities as a natural complement of the dual mixed
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volumes theory, it is also interesting that in these reverse inequalities we come across
the classical hyperplane conjecture. Moreover, Theorem 3.1 will allow us to
reformulate the hyperplane conjecture in terms of reverse Minkowski inequalities for
—oo <i< 1. In this section we also study reverse inequalities for other indices i€ (n —
1,+00) and we find out that they are related to different classical positions of convex
bodies such as /-positions. In the range 1 <i<n — 1, we can say something more for
the balls B, 1<p< o0, by using sharp estimates given in [24].

Next we introduce some notation. As usual we let ||x||, = (3} Ixi|")V7, for x =
(x1,...,x,)eR" and O<p<oo. D, denotes the euclidean unit ball, i.e.
{xeR"|[x||,<1}. B, is the unit ball of the norm || - [|,. If A=R", [A] will represent
the n-dimensional Lebesgue measure of 4. Notice that |- | may also represent the
absolute value of a real number and the euclidean norm of a vector, i.e. || - ||,, since
the context will avoid any confusion.

A set K= R" is star shaped at 0 if Axe K, whenever 0< /1< 1 and xe K. If K is non-
empty, compact and star shaped at 0, its radial function pg is defined by

px(x) = max{A=0: IxeK}

for xeR™\{0}. This function is homogeneous of degree —1. We say that a body
(compact with non-empty interior) K is a star body at 0 if it is star shaped at 0, 0
belongs to the interior of K and the restriction of its radial function pg is continuous
on the sphere §”~!. Every convex body with 0 in its interior is a star body at 0. In this
case

px(x) ™ = |Ixllg = e,

where || - || is the gauge of K, K° denotes the polar set of K and /- its support
function (all these notions are fully explained in [25]).
We recall the definition of the isotropy constant Lg of a convex body K

1

L2|K[*" = inf —/t Sx|? dx.

nLklK] SEI?L(n) |K| K| + 53| dx
teR"

Throughout this paper, unless otherwise stated, we will use C to denote a positive
absolute constant, which can assume different values in different occurrences.

2. Extremal positions for dual and /7 mixed volumes

The Brunn—Minkowski theory is the natural framework to work with shadows
(projections) of convex bodies but when the data concern sections through a fixed
point the dual Brunn—Minkowski theory provides a natural setting. In 1975, Lutwak
(see [13,14] and the references therein) introduced the concept of dual mixed volumes.
If K, LSR" are star bodies at 0, the dual mixed volumes V;(K, L) are defined for
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all ieR by

VK. L) = VK= i Li) = [ il (o) doto) (1)

where pg(-), pp(-) are the radial functions of K, L and ¢ is the Lebesgue measure on
S"~1. General properties of dual mixed volumes can be also found in [5]. By changing
variables, it is clear that

Vi(K,L) =V, (LK) = |det T|"' V,(TK, TL) (2)

for all Te GL(n).

It seems that many of the results found in Brunn—Minkowski theory have
analogues in this dual Brunn—Minkowski theory. A clear example of this is the
Minkowski inequality. A simple use of the Hoélder inequality implies that

Vi(K,L)<|K|" "\ L[ if ie[0,n), (3)

Vi(K,L)=|K|" "L i i (0,n), (4)

which can be understood as a dual of the well-known result of Minkowski. These
inequalities make us wonder when

Vi(K,L) = max{V;(SK,L); SeSL(n)} if i€[0,n] (5)

or

Vi(K,L) = min{V;(SK,L); SeSL(n)} if i¢(0,n). (6)

We should note that the origin now plays an important role. This theory is not
translation invariant, so we should only consider linear positions of convex bodies,
ie. {SK;SeSL(n)}.

In this section we study necessary and sufficient conditions for K and L to solve
the extremal problems stated in (5) and (6) and we show that the necessary and
sufficient conditions for K and L to be solutions of these extremal problems are
related to the existence of measures with “‘isotropic”-type properties, extending the
ideas of Giannopoulos and Milman [6].

Proposition 2.1. Let K, L= R" be convex bodies having 0 in their interior such that K°
and L° are “smooth enough” (that is, hx- and hy- are twice continuously differentiable).
Then each of the following conditions

() for some ie(0,n), Vi(K,L) = max{V;(SK,L); Se SL(n)},
(i) for some i¢[0,n], Vi(K,L) = min{V;(SK,L);SeSL(n)},
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implies that

% VI(KyL) :%\/SU?l pi;{i( ) l+1( )<VhL( ) Tu> dg(u) (7)
[ k) T ). i o) 5

for all T e GL(n).
Proof. We only prove case (i) since (ii) is similar. It is also clear (see (2)) that
Vi(SK,L) =V, (T~'L,K), for all SeSL(n), so we only need establish (7).

If we take TeGL(n), there exists g >0 such that for every 0<e<g, we can
define

_ I+eT
| det(1 + ¢T)|""

By hypothesis, Vi(K,L)>V;(S;'K, L) = Vi(K, S,L), that is
[ icipw datz [ ol (o) oo,
but since pg () = p,(¢~'u),

ettt 460" [ o) dotu)> [ o ol (4 +oT) u) dotu),

Sn—1 Sn—1
It is easy to prove that if ||eT|| <1

(tr T)

det( +eT)"" = 1+ 252 1 o),

(I+¢T) " (u) = u—eTu+ O(e)
and

1 1
(th(u) —e{Vh(u), Tuy + 0(82))

———(hy-(u) + ie{ Vhr-(u), Tu) + O(¢*))

pi(u — eTu + O(%)) =

h1+1( )
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when £¢—0. Hence,

(14255 06) [ kot dote)

. () dof) |
st (hpe(u) — e Vhr-(u), Tuy + O(&?))'

:nI7i(K,L)+i8/ P (u )M

o\u 2.
[ i 4ot + 0&)

Then, if e=0"

~ . 1
ﬂn(K,L); /S/z—l P (u )hz+1( )(VhL( u), Tu) do(u)

n

:%/ P (W)pl () {Vhy(u), Tu do(u).
S’l*]

But if we replace T by —T we conclude that

%V(K L= 1/5 P () pi () Ve (), Tud do(w). O

Note that conditions (7) and (8) can be understood as non-commutative
isotropic conditions for the measures p’(-)p"!(-)da(-) and p’%k 1(\)p' (-) da(-),
respectively.

Next, we show that these necessary conditions appearing in Proposition 2.1 are
also sufficient in some cases, but first of all we shall study relations between these two
conditions (7) and (8). This is stated in the following result.

Proposition 2.2. Let K, L= R" be convex bodies having 0 in their interior and such that
K° and L° are “smooth enough”. The following assertions are equivalent:

(i) For every T e GL(n) symmetric

%/S Ok () Ve ), Tied dou) ==L VK, L),

(ii) For every T € GL(n) symmetric,

1 . ) N
5/5 Pk " W)py () Vhic-(u), Tuy do(u) === Vi(K, L).
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Proof. Since for every TeGL(n) symmetric, there exist 0;€S"! and ;>0 (i =
1, ...,n) such that

T = )49[@9,’,

n
=1
it is enough to prove that the following assertions are equivalent:

(i) For every 0eS" !,

/Sm P (W) () {Vhye(u), 0 {u, 0 da(u) = Vi(K, L).

(i) For every e S"!,

/S P W00 Vi (1), 05 <, 05 do(w) = V(K. L)
Take 0eS"!. We shall use the Laplace-Beltrami operator. If we define F :
R"\{0} [0, +00) by

_(x0)?

———, xeR"{0},
2|x]

F(x)

it is easy to check that for every ue S" ', VF(u) = {u,0%0 — {u,0>*uand AF(u) =
1 —ndu,0>?.
On the other hand, we define H : R"\{0} — [0, +o0) by

H(x) = hy (i) HhLa (i> - R™ {0}

|x |x
Since support functions are 1-homogeneous, it can be proved that for every ue S" !,
VH (u) = (i — n)hg-(u) " hge ()" (Vhg- (1) — hg-(u)u)
— ihp ()™ g ()" (Ve (u) — by (u)u).

Now, if we integrate on the sphere and use Green’s formula for the Beltrami
operator (see for instance [10, p. 7]), we get that

H(u)AF(u) do(u) = — (VF(u),VH(u)) do(u).
Sn*l Snfl
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Hence we deduce
=) [ o Wl )< T 1.0 <2, 03 d)
— VK, L)— i /S P () e (1), 03 <, 0 dou),
for all e $"~! which completes the proof. [J

We do not know if this result is true for general transformations. We can achieve a
complete characterization only in special cases, for example when one of the bodies
is the euclidean ball. We also remark that, if L = D,, condition (i) in the last
proposition means that the measure p’'(-) da(-) is isotropic.

We now study whether assertion (7) or (8) is sufficient to ensure that K solves the
extremal problem (5) or (6).

Proposition 2.3. Let K, L= R" be convex bodies having 0 in their interior and such that
K° and L° are “smooth enough”. If i< — 1 and L is 0-symmetric, then the following
assertions are equivalent:

() Vi(K,L) =min{V;(SK, L)}, when the minimum runs over all symmetric, positive
definite matrices SeSL(n).
(ii) For every T symmetric, positive definite matrix in GL(n),

1 tr7 -~

E/SH P W) (u) {Vhy-(u), Tuy do(u) = — Vi(K,L).

Moreover K is the unique symmetric positive definite position satisfying (1) or (ii).
Furthermore, if i = —1 the result holds without any symmetry assumptions on L.

Proof. Implication (i) = (ii) can be proved by using the same ideas as in Proposition
2.1.
(il) = (i) We shall assume i< — 1. If we take Se SL(n), by using (2)

PSK.L) = ViK,S L) = [ o gl () dotu)

1 . .
:—/SM Pk (g 1o (u) do(u).

n

By using Holder’s inequality with respect to the measure L p%~(-) do(-) we get

VilsK.L)> (1 /S P ()pl (u) do(u)) "

n

x (1 [ s ) do(u))

n
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Since {Vhp:(u), Suy <hgx 1 (u) for all ueS" ! (see [25, p. 40]) and the symmetry of
L implies that also

| {Vh(u), Sud [ <hgw o)1),
if SeSL(n) is positive definite, we get that

1

pisk.L> kD) (5[ sl (0« 565 dotw))

= (Vi(K,L))™ (‘[1‘7S P, L)>l.

> (det S)"/"Vi(K,L) = Vi(K, L),

so we obtain the result for i< — 1.

The uniqueness is a consequence of the fact that for symmetric definite matrices
(tr S)/n = (det S)"/" if and only if S is the identity.

The case i = —1 can be proved by analogous methods and we do not need any
symmetry property on L. [

Remark 2.4. Since V;(K,L) = V,_;(L,K), by using the last result we can state a
similar proposition for V;(K, L), with K 0-symmetric and i>n + 1.

As we said before we can improve our results if one of the bodies is the euclidean
ball D,,. In the sequel

Wi(sK) = Pi(sK.0) =+ [ ”"Su(|f‘) do(u),

where SeSL(n) and K<R" is a convex body having 0 in its interior. By using the
symmetry properties of D,,, it is easy to check that we only have to consider Se SL(n)
which are symmetric and positive definite in order to optimize the dual
quermassintegrals.

As an application of dual Minkowski inequalities (3), (4) and the next lemma we
can ensure the existence of extremal positions for the dual mixed volumes.

Lemma 2.5. Let K, LS R" be convex bodies with 0 in their interior, then

~ 0 if ie(0,n),
lim Vi(SK.L) = g ie(0m (9)
SeSL(n) +oo  if ie(—00,0)u(n, o).
ISl — o0

Proof. Since C;(L)W;(SK)<V;(SK, L)< C>(L)W;(SK), where Ci(L), C5(L) >0 are
constants only depending on L, it is enough to prove the result for W;(SK).
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First of all we suppose SeSL(n) is diagonal, with diagonal elements d|, ...

such that [[7_, d; = 1.
If 0<i<n, by using polar coordinates it is clear that

% 1 n—i
iSK) = [ ot ) datu)
n—i dx _n— i/ dx
noJk|Sxt o n Sk (DL dix)?

/Z L dill”

11

,d, >0

where C(n, i) denotes a constant depending on n and #, which could vary from line to
line. If we let B! = Q,={xeR"|x;]<1}, there exist r, R>0 such that
r0, €K <= RQ,. Therefore, if di = max{d;: 1<j<n}, by using Fubini’s theorem

Wi(SK)< C(n, i) /R , #
dx

Qan |xj|
. = bdyy...d
= C(n,i)R"" // ARl
0 Jo 0 Zj:lyj
d[ dz dnd d
V1 ...A)p
- 7>
1 Jo 0 Zj:lyj

< C(n, i)R"™

Notice that

1 dz 1
/ / e / dy1< / dy,’/n>
o Jo o X Wyl " hal

n

(n—i)/n
< C(n>< d,) = C(n)d"™" -0,

=2

when ||S||— + 0. On the other hand, if i#1

dy dp d,,d dn n d]d 1 1
oo [ [ [t (0 [ (D)o
! 0 0 Zj:l |yj| j=2 1 Y1 d] dl
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when [[S||— 4+ oo and if i =1
dyy..dy, 1 ["d logd
0<// /yl y /ﬁ:C()oglo’
S gl dl Y d,
when ||S||— + oo, therefore W;(SK)—0, when ||S||— + .

If — o0 <i<0 the proof is almost the same, but the case i > n is different. Following
the same ideas as before we get that

- C(n,i d
wsk)z ol [ B
R Jos 30y x|
where Qf is the complementary set of Q,. If di = min{d;: 1<j<n}, we have

Wi(SK)= C(n, i) / X
Z d’\x,|
dy/dy d/dy dxy...dx
d n
nl/xl/ / P
d;

)d{(2’+n7 D15 d
=C(n,i)d} " - o

=C(n,

when ||S]|— + 0.

If SeSL(n) is a symmetric, positive definite matrix, there exist an orthogonal
matrix Ve O(n) and a diagonal matrix D with diagonal elements d, ...,d, >0 such
that H;’:l d;i =1 and S = V*DV. Henceforth if we assume rD, =K = RD,,

L[ k()
Wi(SK) = /S”l Sl do(u)

1
~ / . do(u)
s |DVu|
1
:/ =da(v)
Sn-1 ‘DU|

where A~ B means here that the quotient 4/B is bounded from above and from
below for constants depending only on n, i, R and r. Hence

0 if ie(0,n),

lim W;(SK)= lim W;DK)= o O
SeSL(n) DeSL(n) +oo if ie(—o0,0)u(n, o).
[|S]|— D diagonal

D] - 0

The isotropy of some measure characterizes exactly when K optimizes the dual
quermassintegrals in the range ie (—c0,0), as is shown in the following result.
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Theorem 2.6. Let K<R" be a convex body having 0 in its interior. Suppose that
K° is “smooth enough”. Let ie(—00,0). Then the following assertions are
equivalent:

() Wi(K) = min{ W;(SK); Se SL(n)}.
(it) For every T e GL(n),

%/S’H P"K’i+l (u){Vhg:(u), Tu) do(u) = - W,(K)

(i) For every T € GL(n) symmetric,

1 T .
E/Sn 1an N u)  Vhge(u), Tuy do(u) :trT Wi(K).

(iv) The measure given by p'(-) da(-) is isotropic in S"~!.
(V) For every 0.>0 and for every SeSL(n)

e
(vi) For some oy >0 and for every SeSL(n)

/(S_x|> |x|_idx>/ x| " dx
x \ [x] K

Moreover, any one of these six assertions implies that K is the unique position, up to
orthogonal transformation, that minimizes Wi(SK).

Proof. Implication (i) = (ii) is a consequence of Proposition 2.1.

Implication (ii) = (iii) is trivial.

Implication (iii) = (iv) is deduced from Proposition 2.2, since for L =D,
condition (i) in that theorem is just the isotropy of the measure p’ /() da(-).

Implication (iv) = (v) is a consequence of the following Lemma 2.7 applied to the
measure du(-) = p%(-) da(-) and the use of polar coordinates.

Implication (v) = (vi) is trivial.

Implication (vi) = (i) is also a consequence of the following Lemma 2.7 applied to
du(-) = p"%'(-) do(-) for og = —i and the use of polar coordinates.

The uniqueness can be proved as in Proposition 2.3. [

We want to point out that simply by using Remark 2.4 we could obtain Theorem
2.6, but only in the range ie (—oo0, —1].



14 J. Bastero, M. Romance | Advances in Mathematics 1 (1ill) 1000

Lemma 2.7. Let p be a positive and finite Borel measure on S"~'. The following
assertions are equivalent:

() u is isotropic on S"~'.
(it) For every SeSL(n) and for every a>0

/SM'S“| duu / du(u). (10)

(i) There exists ay>0 such that for every SeSL(n)

[ tsa duto= [ autw) (1)

Proof. (i) = (ii) We first prove that (10) holds for every SeSL(n) diagonal, with
diagonal elements d, ...,d, >0 such that [[d; = 1.

If o€ (0,2], then f(x) = x*/ is concave in [0,400) and since Y u; = 1

[ s duto = | (Z & ) W= [ g & du
_ - o 2 _ - (xl 2
=>4 | du =3 [ dutu

Jj=1

n 1/n
> (H dj?‘) / uf? dia(u / du(u
=1 "

If oe(2,+), let us consider p =a/2e(l,+c0) and if p~! + ¢! =1, by using
Holder’s inequality we get that

[ st = [ Zdzuzdu
2/a

(/sw ( zj; 61',2“/2> 2/2 d,u(u)) ( 5 d,u(u)> 1/q.

N

Therefore,
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But, notice that

So
/S IS(u)I"‘du(u)>( - d,u(u))pp/q: [ dutw),

Now, if SeSL(n), there exist orthogonal matrices V', W e O(n) and diagonal matrix
D with diagonal elements d,, ...,d,>0 such that [[d; =1 and S = WDV (in this
case we cannot restrict to symmetric, positive definite matrices). Then,

[ s dneo = [ oyl due = [ 1pver du

Sn—1

_ /S DG av () (),

where V(i) denotes the image measure of 1 by V. It is easy to check that if u is a
Borel isotropic measure in $"~!, then for every orthogonal transformation V e O(n),
V(u) is also a Borel isotropic measure in S"~! and u(S"!) = V(u)(S"!). Hence,

/ 1S duu) = / D@ dV (1) (w)
Sil*l Sllfl

> [ v = [ dut

Implication (ii) = (iii) is trivial.
In order to prove (iii) = (i), it is enough to show that for every T € GL(n)

(Tuuy dpw) =52 [ duu). (12)
Sn—1 n Sn—1

If we take T'e GL(n), we consider for every 0 <e<g
_ I+eT
’ |det(1 + T)|'/"

It can be shown that by using the same variational technique as in Proposition 2.1,
we obtain (12). O
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Remark 2.8. If K has its centroid at 0 and i = —2, taking o = 2, the last theorem
ensures that K is in a position that minimizes W_,(SK) if and only if K is in isotropic
position.

The preceding lemma allows us to investigate the solution of extremal problems in
the context of the Brunn—Minkowski-Firey theory of [7-mixed volumes. If
K, L=R" are convex bodies with 0 in their interior, 1<p<oo and i=0,...,n— 1,
Lutwak [15] defined the LP-mixed volume W, ;(K,L) as

1 _
WKL) = [ 0 ) dS (K.,
Sn—1
which fits the Firey addition of sets (see [14,15] and the references therein). A direct
consequence of the preceding lemma shows that, by using the same ideas as in the
dual Brunn—Minkowski theory, for a convex body K< R" with 0 in its interior, the
following assertions are equivalent:

(i) Si(K,-) is isotropic on S"!.
(i) The I”-mixed volume W, ;(K,D,) = min{W,;(SK,D,); SeSL(n)}.

In particular for i = 0 and p = 2 we can characterize when the Lutwak—Yang—Zhang
ellipsoid I' _»(K) is an euclidean ball (see [16,17]) in terms of extremal I”-mixed
volumes. This is stated explicitly as follows:

Proposition 2.9. For a convex body K<R" with 0 in its interior, the following
assertions are equivalent:

(1) WQ_’()(K, Dn) = l’Illl’l{ Wz_’()(SK, Dn); SESL(I’!)}
(il) I'_»(K) is a multiple of the euclidean unit ball.

In the range ie[n+ 1, c0), the results we gather in the dual Brunn—Minkowski
theory are not so complete as the preceding ones and are a consequence of Remark 2.4.

Corollary 2.10. Let K= R" be a symmetric convex body with 0 in its interior. Suppose
that K° is “smooth enough”. Let ie[n+1,00). Then the following assertions are
equivalent:

() W;(K) = min{W;(SK); SeSL(n)}.
(i) For every TeGL(n),

1 . T
Z/SM i (w) Ve (), Tu)y do(u) = trT Wi(K).

(iii) For every T e GL(n) symmetric,

1 ' T .
E/SH p’11(1+1(1/l)<vh1(c(u), Tu) do(u) = ‘[1‘7 Wi(K).
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(iv) The measure given by p’(-) da(-) is isotropic in S"!.
Moreover K is the unique position, up to orthogonal transformation, that minimizes
Wi(TK).

Proof. Implication (i) = (ii) is consequence of Proposition 2.1.

Implication (ii) = (iii) is trivial.

Implication (iii) = (iv) is deduced from Proposition 2.2 and (iii) = (i) is deduced
from Remark 2.4. [

3. Reverse isoperimetric inequalities

In this section we study reverse inequalities for Minkowski dual inequalities
associated to dual quermassintegrals. Let K be a convex body with 0 in its interior.
According to (3) and (4) we have

Wi(K)<|K|"="|D, " if i€ [0,n], (13)

Wi(K) = |K|" "\ D, "™ if i (0,n). (14)

It is well known that we cannot reverse these inequalities since this would imply that
K is homothetic to D,. We want to reverse the inequalities by using different affine
positions of K, as was done by Milman and Ball in other situations (see the
Introduction). This problem is closely related to that of the previous section. Indeed,
we can define the function

Yix(t,T) = Wi(t+ TK),

where te R” and T varies on SL(n) in such a way that 0 is in the interior of ¢ + TK.
Since ; ¢ (¢, T) is bounded (see (13) or (14)) and it has a suitable behaviour on the
boundary of SL(n) (cf. Lemma 2.7) we know that for a fixed ¢ the function y, (¢, T')
attains its extreme value. In Section 2, we obtained necessary and/or sufficient
conditions for a position to be extreme. What we shall do now is to estimate how
close are the universal bounds given in (13) or (14) from the corresponding extreme
values of the function y; (¢, T). The results we get depend on the range of ’s and, as
before, they are sharp for the interval ie (— oo, 1).

Theorem 3.1. Let K =R" be a convex body and let ie (— o0, 1), i#0. Then, there exists
an affine position of K, t + TK, with teR" and T € SL(n) such that 0 belongs to the
interior of t + TK and

Clil < Wi(t+ TK)

< : < (Gli]) !
1 _i n—i)/n i/n ’
L K" D,|"
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for —oo <i<0; and

Wi(t+ TK) e
LI_(i|K|(n7i)/n|Dn|i/n (1 _ l.))’

for 0<i<1, where Cy, C, are absolute constants and Lk is the isotropy constant of K.

Proof. There exists 1€ R” and T € SL(n) such that  + TK is in isotropic position (see
[4,19]). Then the origin is the centroid of # + TK and

- 1 n—i dx
Wi+ TR) = [ ot dot) ="t [
=1 t

n Stk |x|'
Since ie(—o0,1), by using well-known results about equivalence of moments of

order —ie(—1,+00) of a norm on any convex body (see for instance [11,12,19,21])
we obtain that for some absolute constant C>0 we have

1+min{i,0}(i/ |x2dx)]/2< <L/ |x|_[dx>_1/i
C K| Jerrx K| Jevrx
S ] 2 /2
< Cmax{2,—i}|— |x|"dx | .
K| Jrsrx

Hence

L. - my
1 +min{-i,0} ), 1n n Wi(t+ TK)
_— Lg|K|'"<

C nLklK] n—i  |K]

< Cmax{2, —i}n'*Lg|K|"".
On the one hand, if i<0, we get that

qon—i . Wit+TK -0 . o
<™ Lerig 1+ n)ﬂs Tl max{2, i}
" noPL K"

< (Gali) ™.

On the other hand, if 0<i<1 and >2, then

n—i i (Z+TK)
n n

LK
i i "
< (i) SL.. O
1 —i (1)

C] —a"
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The estimate we obtained is sharp in the following sense. Suppose i = —1. Our
result says that for any convex body K of volume equal to 1, we can find a position
such that

C\Li|Dy| ™" < W_y (1 + TK)< CoLg | D, |/,

Furthermore, to prove that “for any convex body K of volume equal to 1 there exists a
position such that

C\ D, "< Wi (1 4+ TK)< G|D, |77,

where Cy,Cy>0 are absolute constants” is a reformulation of the hyperplane
conjecture (see [19]). Note that the case i = —2 would be exactly the hyperplane
conjecture. Now we know that we can reformulate the hyperplane conjecture in
terms of sharp estimates for the dual quermassintegrals of the convex bodies in the
range i€ (—o00,0)u (0, 1).

Apart from this reformulation of the hyperplane conjecture, if we consider i — 0 in
the last theorem, since

8 e e
— x| "dx —exp| — log |x| dx |,
(1L ™ 0 PR Sy 8

we get that there exist affine position ¢ + TK such that

) <o J<en(fpy)
CiLg|— <exp| ——— log |x|dx | <CL .
! K<|Dn| PUST TR i 2B L5\ [p,]

Moreover, if we could prove that there exists an absolute constant C such that for
every dimension n and every convex body K with |K| =1 there exists an affine

position K = s+ T'K such that

n

(s [ sktlog pglwot)) <OV (13

then we would have proved the hyperplane conjecture. Notice that inequality (15)
can be understood as a reverse of an inequality proved by Milman and Pajor [19, pp.
76-717].

Next we shall study the case ie(n— 1,n)uU(n, 00), but for convenience we let
o=1i—n.

Theorem 3.2. Let K<SR" be a convex body. There exists an affine position of K,
t + TK, such that 0 belongs to the interior of t + TK and for every o.e(—1,0)u (0, c0)
. ~ —a nto
(i) Wyt + TK) < C(o)log(n)*|K[ 7 D, 7, if 20,
.. ~ —a nto
() Wieo(t + TK) > C()log(n)*|K |7 |Dul 7, if —1<a<0,

where C(a) is a constant which only depends on .
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Proof. Suppose K is symmetric with respect to the origin (0-symmetric). Let

MK) = s [l doto)

where || - || is the norm on R” whose unit ball is K. We use the well-known MM*-
estimate and so there exists a 7€ SL(n) such that

M(TK)M((TK)°)< Clogn,

for some absolute constant C >0 (this position is known as the /-position or mean
width position, see for instance [6,23]). Since

M( ) ‘Dn‘ r1+1(TK)
M((TK)*) = |Du|™ Wit (TK)?)
and by using (3) and the Blaschke—Santal6 inequality, we get that
o R o =L n+l
Wurt(TK)") = [(TK)?[ 7 |Dy| 7
[
> K[ D],
so we obtain
~ 1 1
Wyt (TK)< Clogn|K| 7| D,| ™. (16)

Consider now the general case. Let ae(—1,0)u (0, c0). We use the same /-position
and so

N 1 .,
o TK) =, [ il dotu)

D,
~ e —2 L el ),
Vnn+a—

where 4~ B means here that the quotient 4/B is bounded from above and from
below by absolute constants, C(a) is a constant depending on « and dy,(x) is the
canonical Gaussian probability on R”". Indeed, by using polar coordinates

2 F(VFHX)
X||7g dyp(x) = ——=— u| |7y do(u
L i) = F iy L Nl doto

a—1 n
nn+ou—2)2 (mn+o—2\2 o
= a2 (ARl dot)

=
eng(Snfl) n

a1
= oI [l dotu)




J. Bastero, M. Romance | Advances in Mathematics 1 (1ill) 1000 21

It is well known that the canonical Gaussian probability is log-concave and the
moments of order oe(—1, c0) of a norm with respect to log-concave measures are
equivalent up to an absolute constant (see [12]), i.e. there exists an absolute constant
C >0 such that

1/a
c [l aneos ([ Irdne) < Cmaxtiag [ il

Then, if >0
V. (TK)< | Dl d ’
s (TK) < C() ([ 16l )
Jiln o~ 2T R
D, n ”
< ct)—L (A ulydota)
il o~ 2T -
a—1
< @) D (W (TE))
S o ) n n+1
oa—1
n 5
o —a/n 1+o/n
< C0)(a—y) " ownIKI "D,

< C(a)(log n)*|K| ™" D,| /"

The case —1 <a <0 is similar.

For a general convex body K, we can assume that its centroid is at the origin.
Therefore 0 K n(—K)< K and since K (—K) is a symmetric convex body, there
exist T e SL(n) such that

~ ~ e nto
Wiria(TK) < Wiso(T(K 0 (=K))) < C(a)log(n)*| K O (=K)[7#|Dy| »
< C(@)log(n)’|K| 4D, ",

since |K|'"<2|K A (—K)|[V" (see [20]). O

If we want to study the case ie (1,n — 1), a trivial calculation shows that, by using
maximal volume positions, the dual Minkowski inequality can be reversed, but the
inequality obtained is far from being sharp. Instead of doing such a straightforward
computation, we will investigate the case of B) balls where we can go further and get

sharper estimates as the following result shows.

Proposition 3.3. Let 1 <p< co. There exists C,>0 such that for every ne N and every
O<i<n

I/f/,(B}n)) > C[r)nin{i,nfi}|Dn|i/n |BZ‘(n_i)/n-
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Proof. It is easy to check that for every star body K< R" if 0<i<n

> 1 n—i n—i [T i
WiK) = [ o™ da) ="t [ xeks >
7\ [t® .
:u/ |K AsD,| s~ ds.
h 0

So we only have to give lower estimates for |B) N sD,|.

If 1<p<2,
T (}’l B l)l n—i—1
Wi(BY)> ID,|s" ! ds +
0 nl/2=1/p

:(n—i)z[ 1 |Dn|(nl/2—l/p)ni+/l

n—i /2-1p

nl/2-1/p 1

\BI’;r\sD,JS*"*1 ds]

|B, AsD, s ds} .

Notice that
1

1
/ |B;msDn|s_’_] ds>= / |B, nsD,|s~ 1 ds
nl/2-1/p nl/2-1/p

1 xeB"; |x|>s .
= B 1 — I pi 11> s} s7 7 ds
2nl/2=1/p ? |B;| ’

hence, by using the estimates of the volume of the intersection of two /z balls (see
[24]) we get that

I 4 1 —esP ,
/ |BstDn|s’l’lds>/ J:A T UG DR ETR
n 2nl/2=1/p ‘Bz|

1/2-1/p

1
> Gy|B)| s~ ds.
2nl/2-1/p

Therefore,
VVz(BZ) > ‘Dn‘l/n‘Bﬂ(n—l)/n - (n1/27l/[))l‘l—l < n )

By
Lo nmif1Bl " yilp=if2
?"n \|D,] 2

. L i . n—i _.
L e
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Now it is easy to check that if o, f>0 such that « + f = 1 and 0<x< 1, then

xmin{a.ﬁ} >ax[3 + ﬁxa>%xmin{a,ﬂ}’
hence
- ; (i i . n—i _ 1 : s minfin_i
VV,(B;)Z |Dn|1/H|Bp|(H i)/n |:; C[};l i +T le?:| >§ |Dn‘z/n|B;|(n l)/ncpn {in ,}.

On the other hand, if 2<p< w0,

s 7 (I’l—l)l
w8y > [ /

=

By sD,| = [{xesDy; ||x]|,<1}]

eD,; >s57!
:S,,|Dn|<1_|{y Il })7

nl/2=1/p +oo

|B, NsDy| sTds + /

nl/zfl/ﬁ

7| —i—1
|B,|s ds]

2
nl/2 1/p

. 1 PN
|ByA\sD,| s~ 1ds+7|B;|(n1/1’ 1/2)].

Now, since

| Dn|

by using the estimates of the intersection of two /) balls given by Schechtman and
Zinn [24] we can assert that if n is big enough

/21 /21 n
. . exp(—c%
/ |B, N sDy| s Vs> [ s D,| (1 - %) ds
1 in‘/z*‘/l’ | n|
nl2=1/p
> C|D,| s s,
%nl/Z—l/p

Hence

. . i (1D,] (n=0)/ .
Wi(By) = D, By "0 Cp | (n!/27 1y
n\|By|

. |\ i/
n—t |Bp|> i/p—i
+ n'/? i/2
n (|Dn|

i n—i n—i i i n—i
> D" 1Bl [— GG }

1 4 » o
> 5 |Dn|l/n|BZ|(n 1)/I1C11)mn{z.,n71}.
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Note that if n is not “big enough™ (i.e. 1 <n<ny), we can obtain the same inequality
as before simply by adjusting the constant C,. The case p = oo can be proved as
before but by considering 1/p =0. O
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