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Abstract

We show that there are close relations between extremal problems in dual Brunn–

Minkowski theory and isotropic-type properties for some Borel measures on the sphere. The

methods we use allow us to obtain similar results in the context of Firey–Brunn–Minkowski

theory. We also study reverse inequalities for dual mixed volumes which are related with

classical positions, such as c-position or isotropic position.
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1. Introduction and notation

An isotropic measure m in Rn is a positive, finite Borel measure on Rn such that

Z
Rn

xixj dmðxÞ ¼ L2dij

for all 1pi; jpn; where L is a constant.
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If K is a convex body in Rn we shall say that K is in isotropic position if its centroid
is the origin and the measure m ¼ wKðxÞ dx is isotropic, i.e. for some constant LZ

K

/x; yS2 dx ¼ L2

for all yASn�1: Given a convex body K in Rn we consider the family of its positions

ft þ SK ; tARn;SASLðnÞg; where SLðnÞ denotes the family of n 	 n real matrices
with determinant equal to 71: It is well known that any convex body has a unique
(up to orthogonal transformations) isotropic position.

Giannopoulos and Milman associated isotropic measures to extremal positions of
convex bodies in Rn as a tool to discuss an isometric approach to the study of the
different positions for convex bodies, which have been introduced in the local theory
of Banach spaces (see [6,7]).

For instance, the isotropic position of a convex body, defined above, is the

solution of the extremal problem minf
R

K
jt þ Sxj2 dx;SASLðnÞ; tARng (see [19] for

the symmetric case and [4] for the non-symmetric one).
In the same way, the euclidean ball Dn is the ellipsoid of maximal volume among

all ellipsoids contained in a symmetric convex body K (John’s ellipsoid) if and only if
the identity In is the solution of the extremal problem minfjjS : cn

2-XK jjg and this

situation is characterized by the existence of an isotropic measure m supported on the
contact points of K and Dn (XK represents the normed space Rn endowed with the
gauge function of K). In [9] the authors characterize the extremal volume position
between two convex bodies in terms of decompositions of the identity (see [3] for a
non-convex case). These decompositions of the identity can also be understood as
the existence of some generalized isotropic measures supported on the contact pairs,
which emphasizes the close relation between extremal problems of convex bodies and
measures with isotropic-type properties.

The minimal surface position is another example of this phenomenon. If K is a
convex body, we denote by j@K j its surface area. Then K is in minimal surface area
position (i.e. j@Kjpj@ðSKÞj; for all SASLðnÞ) if and only if the area measure sK of K

is isotropic. Recall that sK is the measure supported on Sn�1 defined on each Borel

subset A in Sn�1 as the measure of the set of points in the boundary of K whose outer
normal is in A (see [8,22]).

The mean width of a convex body oðKÞ is defined by

oðKÞ ¼ 2

Z
Sn�1

hKðuÞ dsðuÞ;

where hK is the support function and ds is Lebesgue measure on Sn�1: In [6] the
authors show that a ‘‘smooth enough’’ convex body K (that is, hK is twice
continuously differentiable) is in minimal mean width position if and only if the

measure hKðuÞ dsðuÞ; supported on the unit sphere Sn�1; is isotropic.
These last two cases are also the extreme cases which, respectively, minimize the

quermassintegrals of K ; WiðKÞ for the values i ¼ n � 1 and 1. In the same paper [6],
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the authors also consider the remaining cases and they obtain necessary conditions
for minimizing the corresponding WiðKÞ:

The main goal of this paper is to extend these ideas of Giannopoulos and Milman
and to show that a similar situation occurs when we consider the dual mixed

volumes, ṼiðK ;LÞ; and dual quermassintegrals, W̃iðKÞ: If KDRn is a star-shaped
body and iAR (not necessarily an integer), we consider the dual quermassintegral

W̃iðKÞ defined by

W̃iðKÞ ¼ 1

n

Z
Sn�1

rn�i
K ðuÞ dsðuÞ

(see [13]). We will consider the following extremal problems:

maxfW̃iðSKÞ;SASLðnÞg if iAð0; nÞ;

minfW̃iðSKÞ;SASLðnÞg if ie½0; n�:

In Section 2 we study the positions of a convex body which are solutions of these
extremal problems and we show that there is a close relation between these extremal

positions and properties of isotropic type of some measures. In fact, we prove that if

iAð�N; 0Þ-½n þ 1;þNÞ; the isotropy of some Borel measures on Sn�1 is necessary
and sufficient for a convex body K (symmetric when iXn þ 1) to be in the position

that minimizes W̃iðTKÞ: If iAð0; nÞ the phenomenon is not so clear and, in general,
we can only ensure that the isotropy of some measure is a necessary condition for a

convex body K to optimize W̃ið
Þ; but we do not know if this condition is also
sufficient. The methods we use include general results about isotropic measures on

Sn�1 (see Lemma 2.7) which allow us to characterize the solutions of some extremal
problems in the context of the Brunn–Minkowski–Firey theory (Lp-mixed volumes)
introduced by Lutwak (see [13–15] and the references therein).

It is well known that inequalities like Brunn–Minkowski, or even its most
important consequence the isoperimetric inequality, cannot be reversed, as simple
examples show. However Milman in the very remarkable paper [18] proved that we
can reverse the Brunn–Minkowski inequality, up to an absolute constant, if we
consider different positions for the convex bodies, i.e., there exist positions which are
now called M-positions which allow one to reverse the inequality of Brunn–
Minkowski (see [23] for another approach to the problem using interpolation of
operators and [2] for its extension to the non-convex case).

In the same spirit, Ball [1] proved that among all the positions of a convex body,
John’s position leads to the reverse isoperimetric inequality; i.e. this is the one
position of a convex body for which the surface area is less or equal to the one of a
cube (in the symmetric case) or a simplex (in the non-symmetric one) with the same
volume.

In Section 3 we consider the same problem for dual quermassintegrals, W̃iðKÞ; and
we study the corresponding reverse dual Minkowski inequalities. Apart from the
interest of these reverse inequalities as a natural complement of the dual mixed
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volumes theory, it is also interesting that in these reverse inequalities we come across
the classical hyperplane conjecture. Moreover, Theorem 3.1 will allow us to
reformulate the hyperplane conjecture in terms of reverse Minkowski inequalities for
�Noio1: In this section we also study reverse inequalities for other indices iAðn �
1;þNÞ and we find out that they are related to different classical positions of convex
bodies such as c-positions. In the range 1pion � 1; we can say something more for
the balls Bn

p; 1pppN; by using sharp estimates given in [24].

Next we introduce some notation. As usual we let jjxjjp ¼ ð
Pn

1 jxijpÞ1=p; for x ¼
ðx1;y; xnÞARn and 0opoN: Dn denotes the euclidean unit ball, i.e.
fxARn; jjxjj2p1g: Bn

p is the unit ball of the norm jj 
 jjp: If ADRn; jAj will represent
the n-dimensional Lebesgue measure of A: Notice that j 
 j may also represent the
absolute value of a real number and the euclidean norm of a vector, i.e. jj 
 jj2; since
the context will avoid any confusion.

A set KDRn is star shaped at 0 if lxAK ; whenever 0plp1 and xAK : If K is non-
empty, compact and star shaped at 0, its radial function rK is defined by

rKðxÞ ¼ maxflX0: lxAKg

for xARn
\f0g: This function is homogeneous of degree �1: We say that a body

(compact with non-empty interior) K is a star body at 0 if it is star shaped at 0, 0
belongs to the interior of K and the restriction of its radial function rK is continuous

on the sphere Sn�1: Every convex body with 0 in its interior is a star body at 0. In this
case

rKðxÞ
�1 ¼ jjxjjK ¼ hK1ðxÞ;

where jj 
 jjK is the gauge of K ; K1 denotes the polar set of K and hK1 its support

function (all these notions are fully explained in [25]).
We recall the definition of the isotropy constant LK of a convex body K

nL2
K jK j2=n ¼ inf

SASLðnÞ
tARn

1

jK j

Z
K

jt þ Sxj2 dx:

Throughout this paper, unless otherwise stated, we will use C to denote a positive
absolute constant, which can assume different values in different occurrences.

2. Extremal positions for dual and Lp mixed volumes

The Brunn–Minkowski theory is the natural framework to work with shadows
(projections) of convex bodies but when the data concern sections through a fixed
point the dual Brunn–Minkowski theory provides a natural setting. In 1975, Lutwak
(see [13,14] and the references therein) introduced the concept of dual mixed volumes.

If K ;LDRn are star bodies at 0, the dual mixed volumes ṼiðK ;LÞ are defined for
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all iAR by

ṼiðK ;LÞ ¼ ṼðK ; n � i;L; iÞ ¼ 1

n

Z
Sn�1

rn�i
K ðuÞri

LðuÞ dsðuÞ; ð1Þ

where rKð
Þ; rLð
Þ are the radial functions of K;L and s is the Lebesgue measure on

Sn�1:General properties of dual mixed volumes can be also found in [5]. By changing
variables, it is clear that

ṼiðK ;LÞ ¼ Ṽn�iðL;KÞ ¼ jdet T j�1
ṼiðTK ;TLÞ ð2Þ

for all TAGLðnÞ:
It seems that many of the results found in Brunn–Minkowski theory have

analogues in this dual Brunn–Minkowski theory. A clear example of this is the
Minkowski inequality. A simple use of the Hölder inequality implies that

ṼiðK ;LÞpjK jðn�iÞ=njLji=n if iA½0; n�; ð3Þ

ṼiðK ;LÞXjK jðn�iÞ=njLji=n if ieð0; nÞ; ð4Þ

which can be understood as a dual of the well-known result of Minkowski. These
inequalities make us wonder when

ṼiðK ;LÞ ¼ maxfṼiðSK ;LÞ;SASLðnÞg if iA½0; n� ð5Þ

or

ṼiðK;LÞ ¼ minfṼiðSK ;LÞ;SASLðnÞg if ieð0; nÞ: ð6Þ

We should note that the origin now plays an important role. This theory is not
translation invariant, so we should only consider linear positions of convex bodies,
i.e. fSK ;SASLðnÞg:

In this section we study necessary and sufficient conditions for K and L to solve
the extremal problems stated in (5) and (6) and we show that the necessary and
sufficient conditions for K and L to be solutions of these extremal problems are
related to the existence of measures with ‘‘isotropic’’-type properties, extending the
ideas of Giannopoulos and Milman [6].

Proposition 2.1. Let K ;LDRn be convex bodies having 0 in their interior such that K1

and L1 are ‘‘smooth enough’’ (that is, hK1 and hL1 are twice continuously differentiable).
Then each of the following conditions

(i) for some iAð0; nÞ; ṼiðK ;LÞ ¼ maxfṼiðSK ;LÞ;SASLðnÞg;
(ii) for some ie½0; n�; ṼiðK ;LÞ ¼ minfṼiðSK ;LÞ;SASLðnÞg;
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implies that

tr T

n
ṼiðK ;LÞ ¼ 1

n

Z
Sn�1

rn�i
K ðuÞriþ1

L ðuÞ/rhL1ðuÞ;TuS dsðuÞ ð7Þ

¼ 1

n

Z
Sn�1

rn�iþ1
K ðuÞri

LðuÞ/rhK1ðuÞ;TuS dsðuÞ ð8Þ

for all TAGLðnÞ:

Proof. We only prove case (i) since (ii) is similar. It is also clear (see (2)) that

ṼiðSK ;LÞ ¼ Ṽn�iðT�1L;KÞ; for all SASLðnÞ; so we only need establish (7).
If we take TAGLðnÞ; there exists e040 such that for every 0oeoe0 we can

define

Se ¼
I þ eT

jdetðI þ eTÞj1=n
:

By hypothesis, ṼiðK ;LÞXṼiðS�1
e K ;LÞ ¼ ṼiðK ;SeLÞ; that isZ

Sn�1

rn�i
K ðuÞri

LðuÞ dsðuÞX
Z

Sn�1

rn�i
K ðuÞri

SeL
ðuÞ dsðuÞ;

but since rfðLÞðuÞ ¼ rLðf�1uÞ;

jdetðI þ eTÞji=n

Z
Sn�1

rn�i
K ðuÞri

LðuÞ dsðuÞX
Z

Sn�1

rn�i
K ðuÞri

LððI þ eTÞ�1
uÞ dsðuÞ:

It is easy to prove that if jjeT jjo1

jdetðI þ eTÞji=n ¼ 1þ ieðtr TÞ
n

þ Oðe2Þ;

ðI þ eTÞ�1ðuÞ ¼ u � eTu þ Oðe2Þ

and

ri
Lðu � eTu þ Oðe2ÞÞ ¼ 1

hL1ðuÞ � e/rhL1ðuÞ;TuSþ Oðe2Þ

� �i

¼ 1

hiþ1
L1 ðuÞ

ðhL1ðuÞ þ ie/rhL1ðuÞ;TuSþ Oðe2ÞÞ
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when e-0: Hence,

1þ ieðtr TÞ
n

þ Oðe2Þ
� �Z

Sn�1

rn�i
K ðuÞri

LðuÞ dsðuÞ

X

Z
Sn�1

rn�i
K ðuÞ dsðuÞ

ðhL1ðuÞ � e/rhL1ðuÞ;TuSþ Oðe2ÞÞi

¼ nṼiðK ;LÞ þ ie
Z

Sn�1

rn�i
K ðuÞ/rhL1ðuÞ;TuS

hiþ1
L1 ðuÞ

dsðuÞ þ Oðe2Þ:

Then, if e-0þ

tr T

n
ṼiðK ;LÞX

Z
Sn�1

rn�i
K ðuÞ 1

hiþ1
L1 ðuÞ

/rhL1ðuÞ;TuS dsðuÞ

¼ 1

n

Z
Sn�1

rn�i
K ðuÞriþ1

L ðuÞ/rhL1ðuÞ;TuS dsðuÞ:

But if we replace T by �T we conclude that

tr T

n
ṼiðK ;LÞ ¼ 1

n

Z
Sn�1

rn�i
K ðuÞriþ1

L ðuÞ/rhL1ðuÞ;TuS dsðuÞ: &

Note that conditions (7) and (8) can be understood as non-commutative

isotropic conditions for the measures rn�i
K ð
Þriþ1

L ð
Þ dsð
Þ and rn�iþ1
K ð
Þri

Lð
Þ dsð
Þ;
respectively.

Next, we show that these necessary conditions appearing in Proposition 2.1 are
also sufficient in some cases, but first of all we shall study relations between these two
conditions (7) and (8). This is stated in the following result.

Proposition 2.2. Let K ;LDRn be convex bodies having 0 in their interior and such that

K1 and L1 are ‘‘smooth enough’’. The following assertions are equivalent:

(i) For every TAGLðnÞ symmetric

1

n

Z
Sn�1

rn�i
K ðuÞriþ1

L ðuÞ/rhL1ðuÞ;TuS dsðuÞ ¼ tr T

n
ṼiðK ;LÞ:

(ii) For every TAGLðnÞ symmetric,

1

n

Z
Sn�1

rn�iþ1
K ðuÞri

LðuÞ/rhK1ðuÞ;TuS dsðuÞ ¼ tr T

n
ṼiðK ;LÞ:
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Proof. Since for every TAGLðnÞ symmetric, there exist yiASn�1 and li40 ði ¼
1;y; nÞ such that

T ¼
Xn

i¼1

liyi#yi;

it is enough to prove that the following assertions are equivalent:

(i) For every yASn�1;Z
Sn�1

rn�i
K ðuÞriþ1

L ðuÞ/rhL1ðuÞ; yS/u; yS dsðuÞ ¼ ṼiðK ;LÞ:

(ii) For every yASn�1;Z
Sn�1

rn�iþ1
K ðuÞri

LðuÞ/rhK1ðuÞ; yS/u; yS dsðuÞ ¼ ṼiðK ;LÞ:

Take yASn�1: We shall use the Laplace-Beltrami operator. If we define F :
Rn

\f0g-½0;þNÞ by

FðxÞ ¼ /x; yS2

2jxj2
; xARn

\f0g;

it is easy to check that for every uASn�1; rFðuÞ ¼ /u; ySy�/u; yS2u and DFðuÞ ¼
1� n/u; yS2:

On the other hand, we define H : Rn
\f0g-½0;þNÞ by

HðxÞ ¼ hK1

x

jxj

� �i�n

hL1

x

jxj

� ��i

xARn
\f0g:

Since support functions are 1-homogeneous, it can be proved that for every uASn�1;

rHðuÞ ¼ ði � nÞhL1ðuÞ�i
hK1ðuÞi�n�1ðrhK1ðuÞ � hK1ðuÞuÞ

� ihL1ðuÞ�i�1
hK1ðuÞi�nðrhL1ðuÞ � hL1ðuÞuÞ:

Now, if we integrate on the sphere and use Green’s formula for the Beltrami
operator (see for instance [10, p. 7]), we get that

Z
Sn�1

HðuÞDFðuÞ dsðuÞ ¼ �
Z

Sn�1

/rFðuÞ;rHðuÞS dsðuÞ:
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Hence we deduce

ðn � iÞ
Z

Sn�1

rn�iþ1
K ðuÞri

LðuÞ/rhK1ðuÞ; yS/u; yS dsðuÞ

¼ nṼiðK ;LÞ � i

Z
Sn�1

rn�i
K ðuÞriþ1

L ðuÞ/rhL1ðuÞ; yS/u; yS dsðuÞ;

for all yASn�1 which completes the proof. &

We do not know if this result is true for general transformations. We can achieve a
complete characterization only in special cases, for example when one of the bodies
is the euclidean ball. We also remark that, if L ¼ Dn; condition (i) in the last

proposition means that the measure rn�i
K ð
Þ dsð
Þ is isotropic.

We now study whether assertion (7) or (8) is sufficient to ensure that K solves the
extremal problem (5) or (6).

Proposition 2.3. Let K ;LDRn be convex bodies having 0 in their interior and such that

K1 and L1 are ‘‘smooth enough’’. If ip� 1 and L is 0-symmetric, then the following

assertions are equivalent:

(i) ṼiðK ;LÞ ¼ minfṼiðSK ;LÞg; when the minimum runs over all symmetric, positive

definite matrices SASLðnÞ:
(ii) For every T symmetric, positive definite matrix in GLðnÞ;

1

n

Z
Sn�1

rn�i
K ðuÞriþ1

L ðuÞ/rhL1ðuÞ;TuS dsðuÞ ¼ tr T

n
ṼiðK;LÞ:

Moreover K is the unique symmetric positive definite position satisfying (i) or (ii).
Furthermore, if i ¼ �1 the result holds without any symmetry assumptions on L:

Proof. Implication ðiÞ ) ðiiÞ can be proved by using the same ideas as in Proposition
2.1.

ðiiÞ ) ðiÞ We shall assume io� 1: If we take SASLðnÞ; by using (2)

ṼiðSK ;LÞ ¼ ṼiðK ;S�1LÞ ¼ 1

n

Z
Sn�1

rn�i
K ðuÞri

S�1LðuÞ dsðuÞ

¼ 1

n

Z
Sn�1

rn�i
K ðuÞh�i

S%ðL1ÞðuÞ dsðuÞ:

By using Hölder’s inequality with respect to the measure 1
n
rn�i

K ð
Þ dsð
Þ we get

ṼiðSK ;LÞX 1

n

Z
Sn�1

rn�i
K ðuÞri

LðuÞ dsðuÞ
� �iþ1

	 1

n

Z
Sn�1

rn�i
K ðuÞriþ1

L ðuÞhS%ðL1ÞðuÞ dsðuÞ
� ��i

:
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Since /rhL1ðuÞ;SuSphS%ðL1ÞðuÞ for all uASn�1 (see [25, p. 40]) and the symmetry of

L implies that also

j/rhL1ðuÞ;SuSjphS%ðL1ÞðuÞ;

if SASLðnÞ is positive definite, we get that

ṼiðSK ;LÞX ðṼiðK ;LÞÞiþ1 1

n

Z
Sn�1

rn�i
K ðuÞriþ1

L ðuÞ/rhL1ðuÞ;SuS dsðuÞ
� ��i

¼ðṼiðK ;LÞÞiþ1 tr S

n
ṼiðK ;LÞ

� ��i

X ðdet SÞ�i=n
ṼiðK ;LÞ ¼ ṼiðK ;LÞ;

so we obtain the result for io� 1:
The uniqueness is a consequence of the fact that for symmetric definite matrices

ðtr SÞ=n ¼ ðdet SÞ1=n if and only if S is the identity.
The case i ¼ �1 can be proved by analogous methods and we do not need any

symmetry property on L: &

Remark 2.4. Since ṼiðK ;LÞ ¼ Ṽn�iðL;KÞ; by using the last result we can state a

similar proposition for ṼiðK ;LÞ; with K 0-symmetric and iXn þ 1:

As we said before we can improve our results if one of the bodies is the euclidean
ball Dn: In the sequel

W̃iðSKÞ ¼ ṼiðSK ;DnÞ ¼
1

n

Z
Sn�1

rn�i
K ðuÞ
jSuji

dsðuÞ;

where SASLðnÞ and KDRn is a convex body having 0 in its interior. By using the
symmetry properties of Dn; it is easy to check that we only have to consider SASLðnÞ
which are symmetric and positive definite in order to optimize the dual
quermassintegrals.

As an application of dual Minkowski inequalities (3), (4) and the next lemma we
can ensure the existence of extremal positions for the dual mixed volumes.

Lemma 2.5. Let K;LDRn be convex bodies with 0 in their interior, then

lim
SASLðnÞ
jjSjj-N

ṼiðSK ;LÞ ¼
0 if iAð0; nÞ;
þN if iAð�N; 0Þ,ðn;NÞ:

(
ð9Þ

Proof. Since C1ðLÞW̃iðSKÞpṼiðSK ;LÞpC2ðLÞW̃iðSKÞ; where C1ðLÞ;C2ðLÞ40 are

constants only depending on L; it is enough to prove the result for W̃iðSKÞ:
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First of all we suppose SASLðnÞ is diagonal, with diagonal elements d1;y; dn40

such that
Qn

j¼1 dj ¼ 1:

If 0oion; by using polar coordinates it is clear that

W̃iðSKÞ ¼ 1

n

Z
Sn�1

rn�i
SK ðuÞ dsðuÞ

¼ n � i

n

Z
K

dx

jSxji
¼ n � i

n

Z
K

dx

ð
Pn

j¼1 d2
j x2

j Þ
i=2

pCðn; iÞ
Z

K

dxPn
j¼1 di

j jxj ji
;

where Cðn; iÞ denotes a constant depending on n and i; which could vary from line to
line. If we let Bn

N
¼ Qn ¼ fxARn; jxijp1g; there exist r; R40 such that

rQnDKDRQn: Therefore, if d1 ¼ maxfdj: 1pjpng; by using Fubini’s theorem

W̃iðSKÞpCðn; iÞ
Z

RQn

dxPn
j¼1 di

j jxj ji

pCðn; iÞRn�i

Z
Qn

dxPn
j¼1 di

j jxj ji

¼Cðn; iÞRn�i

Z 1

0

Z d2

0

?
Z dn

0

dy1ydynPn
j¼1 yi

j

 

þ
Z d1

1

Z d2

0

?
Z dn

0

dy1ydynPn
j¼1 yi

j

!
:

Notice that

Z 1

0

Z d2

0

?
Z dn

0

dy1ydynPn
j¼1 jyjji

pCðnÞ
Z 1

0

dy1

jy1ji=n

Yn

j¼2

Z dj

0

dyj

jyj ji=n

 !

pCðnÞ
Yn

j¼2

dj

 !ðn�iÞ=n

¼ CðnÞdði�nÞ=n
1 -0;

when jjSjj-þN: On the other hand, if ia1

0p
Z d1

1

Z d2

0

?
Z dn

0

dy1ydynPn
j¼1 jyjji

p
Yn

j¼2

dj

 !Z d1

1

dy1

yi
1

¼ CðiÞ 1

di
1

� 1

d1

� �
-0;
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when jjSjj-þN and if i ¼ 1

0p
Z d1

1

Z d2

0

?
Z dn

0

dy1ydynPn
j¼1 jyj j

p
1

d1

Z d1

1

dy1

y1
¼ CðiÞ log d1

d1
-0;

when jjSjj-þN; therefore W̃iðSKÞ-0; when jjSjj-þN:
If �Noio0 the proof is almost the same, but the case i4n is different. Following

the same ideas as before we get that

W̃iðSKÞXCðn; iÞ
Rn�i

Z
Qc

n

dxPn
j¼1 di

j jxjji
;

where Qc
n is the complementary set of Qn: If d1 ¼ minfdj: 1pjpng; we have

W̃iðSKÞXCðn; iÞ
Z

Qc
n

dxPn
j¼1 di

j jxjji

XCðn; iÞ
Z 2

1

dx1

Z d1=d2

0

?
Z d1=dn

0

dx2ydxn

di
12

i þ
Pn

j¼2 di
1

¼Cðn; iÞ 1

di
1ð2i þ n � 1Þ

Yn

j¼2

d1

dj

¼Cðn; iÞdn�i
1 -N

when jjSjj-þN:
If SASLðnÞ is a symmetric, positive definite matrix, there exist an orthogonal

matrix VAOðnÞ and a diagonal matrix D with diagonal elements d1;y; dn40 such

that
Qn

j¼1 dj ¼ 1 and S ¼ V�DV : Henceforth if we assume rDnDKDRDn;

W̃iðSKÞ ¼ 1

n

Z
Sn�1

rn�i
K ðuÞ
jSuji

dsðuÞ

C
Z

Sn�1

1

jDVuji
dsðuÞ

C
Z

Sn�1

1

jDvji
dsðvÞ

where ACB means here that the quotient A=B is bounded from above and from
below for constants depending only on n; i; R and r: Hence

lim
SASLðnÞ
jjSjj-N

W̃iðSKÞ ¼ lim
DASLðnÞ

D diagonal
jjDjj-N

W̃iðDKÞ ¼
0 if iAð0; nÞ;
þN if iAð�N; 0Þ,ðn;NÞ:

(
&

The isotropy of some measure characterizes exactly when K optimizes the dual
quermassintegrals in the range iAð�N; 0Þ; as is shown in the following result.
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Theorem 2.6. Let KDRn be a convex body having 0 in its interior. Suppose that

K1 is ‘‘smooth enough’’. Let iAð�N; 0Þ: Then the following assertions are

equivalent:

(i) W̃iðKÞ ¼ minfW̃iðSKÞ;SASLðnÞg:
(ii) For every TAGLðnÞ;

1

n

Z
Sn�1

rn�iþ1
K ðuÞ/rhK1ðuÞ;TuS dsðuÞ ¼ tr T

n
W̃iðKÞ:

(iii) For every TAGLðnÞ symmetric,

1

n

Z
Sn�1

rn�iþ1
K ðuÞ/rhK1ðuÞ;TuSdsðuÞ ¼ tr T

n
W̃iðKÞ:

(iv) The measure given by rn�i
K ð
Þ dsð
Þ is isotropic in Sn�1:

(v) For every a40 and for every SASLðnÞZ
K

jSxj
jxj

� �a

jxj�i
dxX

Z
K

jxj�i
dx:

(vi) For some a040 and for every SASLðnÞZ
K

jSxj
jxj

� �a0

jxj�i
dxX

Z
K

jxj�i
dx:

Moreover, any one of these six assertions implies that K is the unique position, up to

orthogonal transformation, that minimizes W̃iðSKÞ:

Proof. Implication ðiÞ ) ðiiÞ is a consequence of Proposition 2.1.
Implication ðiiÞ ) ðiiiÞ is trivial.
Implication ðiiiÞ ) ðivÞ is deduced from Proposition 2.2, since for L ¼ Dn

condition (i) in that theorem is just the isotropy of the measure rn�i
K ð
Þ dsð
Þ:

Implication ðivÞ ) ðvÞ is a consequence of the following Lemma 2.7 applied to the

measure dmð
Þ ¼ rn�i
K ð
Þ dsð
Þ and the use of polar coordinates.

Implication ðvÞ ) ðviÞ is trivial.
Implication ðviÞ ) ðiÞ is also a consequence of the following Lemma 2.7 applied to

dmð
Þ ¼ rn�i
K ð
Þ dsð
Þ for a0 ¼ �i and the use of polar coordinates.

The uniqueness can be proved as in Proposition 2.3. &

We want to point out that simply by using Remark 2.4 we could obtain Theorem
2.6, but only in the range iAð�N;�1�:
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Lemma 2.7. Let m be a positive and finite Borel measure on Sn�1: The following

assertions are equivalent:

(i) m is isotropic on Sn�1:
(ii) For every SASLðnÞ and for every a40Z

Sn�1

jSuja dmðuÞX
Z

Sn�1

dmðuÞ: ð10Þ

(iii) There exists a040 such that for every SASLðnÞZ
Sn�1

jSuja0 dmðuÞX
Z

Sn�1

dmðuÞ: ð11Þ

Proof. ðiÞ ) ðiiÞ We first prove that (10) holds for every SASLðnÞ diagonal, with
diagonal elements d1;y; dn40 such that

Q
di ¼ 1:

If aAð0; 2�; then f ðxÞ ¼ xa=2 is concave in ½0;þNÞ and since
P

u2
j ¼ 1

Z
Sn�1

jSðuÞja dmðuÞ ¼
Z

Sn�1

Xn

j¼1

d2
j u2

j

 !a=2

dmðuÞX
Z

Sn�1

Xn

j¼1

da
j u2

j dmðuÞ

¼
Xn

j¼1

da
j

Z
Sn�1

u2
j dmðuÞ ¼

Xn

j¼1

da
j

1

n

Z
Sn�1

juj2 dmðuÞ

X

Yn

j¼1

da
j

 !1=nZ
Sn�1

juj2 dmðuÞ ¼
Z

Sn�1

dmðuÞ:

If aAð2;þNÞ; let us consider p ¼ a=2Að1;þNÞ and if p�1 þ q�1 ¼ 1; by using
Hölder’s inequality we get that

Z
Sn�1

jSðuÞj2 dmðuÞ ¼
Z

Sn�1

Xn

j¼1

d2
j u2

j dmðuÞ

p
Z

Sn�1

Xn

j¼1

d2
j u2

j

 !a=2

dmðuÞ

0
@

1
A2=a Z

Sn�1

dmðuÞ
� �1=q

:

Therefore,

Z
Sn�1

Xn

j¼1

d2
j u2

j

 !a=2

dmðuÞX
Z

Sn�1

Xn

j¼1

d2
j u2

j dmðuÞ
 !p Z

Sn�1

dmðuÞ
� ��p=q

:
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But, notice that

Z
Sn�1

Xn

j¼1

d2
j u2

j dmðuÞ ¼
Xn

j¼1

d2
j

Z
Sn�1

u2
j dmðuÞ

� �
¼
Xn

j¼1

d2
j

1

n

Z
Sn�1

dmðuÞ
� �

X

Yn

j¼1

d2
j

 !1=nZ
Sn�1

dmðuÞ ¼
Z

Sn�1

dmðuÞ:

So

Z
Sn�1

jSðuÞja dmðuÞX
Z

Sn�1

dmðuÞ
� �p�p=q

¼
Z

Sn�1

dmðuÞ:

Now, if SASLðnÞ; there exist orthogonal matrices V ;WAOðnÞ and diagonal matrix
D with diagonal elements d1;y; dn40 such that

Q
dj ¼ 1 and S ¼ WDV (in this

case we cannot restrict to symmetric, positive definite matrices). Then,Z
Sn�1

jSðuÞja dmðuÞ ¼
Z

Sn�1

jWDVðuÞja dmðuÞ ¼
Z

Sn�1

jDVðuÞja dmðuÞ

¼
Z

Sn�1

jDðuÞja dVðmÞðuÞ;

where VðmÞ denotes the image measure of m by V : It is easy to check that if m is a

Borel isotropic measure in Sn�1; then for every orthogonal transformation VAOðnÞ;
VðmÞ is also a Borel isotropic measure in Sn�1 and mðSn�1Þ ¼ VðmÞðSn�1Þ: Hence,Z

Sn�1

jSðuÞja dmðuÞ ¼
Z

Sn�1

jDðuÞja dVðmÞðuÞ

X

Z
Sn�1

dVðmÞðuÞ ¼
Z

Sn�1

dmðuÞ:

Implication ðiiÞ ) ðiiiÞ is trivial.
In order to prove ðiiiÞ ) ðiÞ; it is enough to show that for every TAGLðnÞZ

Sn�1

/Tu; uS dmðuÞ ¼ tr T

n

Z
Sn�1

dmðuÞ: ð12Þ

If we take TAGLðnÞ; we consider for every 0oeoe0

Se ¼
I þ eT

jdetðI þ eTÞj1=n
:

It can be shown that by using the same variational technique as in Proposition 2.1,
we obtain (12). &
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Remark 2.8. If K has its centroid at 0 and i ¼ �2; taking a ¼ 2; the last theorem

ensures that K is in a position that minimizes W̃�2ðSKÞ if and only if K is in isotropic
position.

The preceding lemma allows us to investigate the solution of extremal problems in
the context of the Brunn–Minkowski–Firey theory of Lp-mixed volumes. If
K ;LDRn are convex bodies with 0 in their interior, 1ppoN and i ¼ 0;y; n � 1;
Lutwak [15] defined the Lp-mixed volume Wp;iðK ;LÞ as

Wp;iðK ;LÞ ¼ 1

n

Z
Sn�1

h
p
LðuÞh

1�p
K ðuÞ dSiðK ; uÞ;

which fits the Firey addition of sets (see [14,15] and the references therein). A direct
consequence of the preceding lemma shows that, by using the same ideas as in the
dual Brunn–Minkowski theory, for a convex body KDRn with 0 in its interior, the
following assertions are equivalent:

(i) SiðK ; 
Þ is isotropic on Sn�1:
(ii) The Lp-mixed volume Wp;iðK ;DnÞ ¼ minfWp;iðSK ;DnÞ; SASLðnÞg:

In particular for i ¼ 0 and p ¼ 2 we can characterize when the Lutwak–Yang–Zhang
ellipsoid G�2ðKÞ is an euclidean ball (see [16,17]) in terms of extremal Lp-mixed
volumes. This is stated explicitly as follows:

Proposition 2.9. For a convex body KDRn with 0 in its interior, the following

assertions are equivalent:

(i) W2;0ðK ;DnÞ ¼ minfW2;0ðSK ;DnÞ; SASLðnÞg:
(ii) G�2ðKÞ is a multiple of the euclidean unit ball.

In the range iA½n þ 1;NÞ; the results we gather in the dual Brunn–Minkowski
theory are not so complete as the preceding ones and are a consequence of Remark 2.4.

Corollary 2.10. Let KDRn be a symmetric convex body with 0 in its interior. Suppose

that K1 is ‘‘smooth enough’’. Let iA½n þ 1;NÞ: Then the following assertions are

equivalent:

(i) W̃iðKÞ ¼ minfW̃iðSKÞ;SASLðnÞg:
(ii) For every TAGLðnÞ;

1

n

Z
Sn�1

rn�iþ1
K ðuÞ/rhK1ðuÞ;TuS dsðuÞ ¼ tr T

n
W̃iðKÞ:

(iii) For every TAGLðnÞ symmetric,

1

n

Z
Sn�1

rn�iþ1
K ðuÞ/rhK1ðuÞ;TuS dsðuÞ ¼ tr T

n
W̃iðKÞ:
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(iv) The measure given by rn�i
K ð
Þ dsð
Þ is isotropic in Sn�1:

Moreover K is the unique position, up to orthogonal transformation, that minimizes

W̃iðTKÞ:

Proof. Implication ðiÞ ) ðiiÞ is consequence of Proposition 2.1.
Implication ðiiÞ ) ðiiiÞ is trivial.
Implication ðiiiÞ ) ðivÞ is deduced from Proposition 2.2 and ðiiiÞ ) ðiÞ is deduced

from Remark 2.4. &

3. Reverse isoperimetric inequalities

In this section we study reverse inequalities for Minkowski dual inequalities
associated to dual quermassintegrals. Let K be a convex body with 0 in its interior.
According to (3) and (4) we have

W̃iðKÞpjK jðn�iÞ=njDnji=n if iA½0; n�; ð13Þ

W̃iðKÞXjK jðn�iÞ=njDnji=n if ieð0; nÞ: ð14Þ

It is well known that we cannot reverse these inequalities since this would imply that
K is homothetic to Dn: We want to reverse the inequalities by using different affine
positions of K ; as was done by Milman and Ball in other situations (see the
Introduction). This problem is closely related to that of the previous section. Indeed,
we can define the function

ci;Kðt;TÞ ¼ W̃iðt þ TKÞ;

where tARn and T varies on SLðnÞ in such a way that 0 is in the interior of t þ TK :
Since ci;Kðt;TÞ is bounded (see (13) or (14)) and it has a suitable behaviour on the

boundary of SLðnÞ (cf. Lemma 2.7) we know that for a fixed t the function ci;Kðt;TÞ
attains its extreme value. In Section 2, we obtained necessary and/or sufficient
conditions for a position to be extreme. What we shall do now is to estimate how
close are the universal bounds given in (13) or (14) from the corresponding extreme
values of the function ci;Kðt;TÞ: The results we get depend on the range of i’s and, as

before, they are sharp for the interval iAð�N; 1Þ:

Theorem 3.1. Let KDRn be a convex body and let iAð�N; 1Þ; ia0: Then, there exists

an affine position of K ; t þ TK ; with tARn and TASLðnÞ such that 0 belongs to the

interior of t þ TK and

C
jij
1 p

W̃iðt þ TKÞ
L�i

K jK jðn�iÞ=njDnji=n
pðC2jijÞjijþ1;
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for �Noio0; and

C1p
W̃iðt þ TKÞ

L�i
K jK jðn�iÞ=njDnji=n

p
C2

ð1� iÞi
;

for 0oio1; where C1; C2 are absolute constants and LK is the isotropy constant of K :

Proof. There exists tARn and TASLðnÞ such that t þ TK is in isotropic position (see
[4,19]). Then the origin is the centroid of t þ TK and

W̃iðt þ TKÞ ¼ 1

n

Z
Sn�1

rn�i
tþTKðuÞ dsðuÞ ¼ n � i

n

Z
tþTK

dx

jxji
:

Since iAð�N; 1Þ; by using well-known results about equivalence of moments of
order �iAð�1;þNÞ of a norm on any convex body (see for instance [11,12,19,21])
we obtain that for some absolute constant C40 we have

1þminf�i; 0g
C

1

jK j

Z
tþTK

jxj2 dx

� �1=2

p
1

jK j

Z
tþTK

jxj�i
dx

� ��1=i

pC maxf2;�ig 1

jK j

Z
tþTK

jxj2 dx

� �1=2

:

Hence

1þminf�i; 0g
C

n1=2LK jK j1=np
n

n � i

W̃iðt þ TKÞ
jKj

� ��1=i

pC maxf2;�ign1=2LK jK j1=n:

On the one hand, if io0; we get that

C
jij
1 p

n � i

n
C�i

1 p
W̃iðt þ TKÞ

n�i=2L�i
K jK j

n�i
n

p
n � i

n
C�i

2 maxf2;�ig�i

p ðC2jijÞjijþ1:

On the other hand, if 0oio1 and X2; then

C0
2p

n � i

n
C�i

2 p
W̃iðt þ TKÞ

n�i=2L�i
K jK j

n�i
n

n

p
n � i

n
C�i

1 ð1� iÞ�i

p
C0

1

1� i

� �i

p
C00

1

ð1� iÞi
: &
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The estimate we obtained is sharp in the following sense. Suppose i ¼ �1: Our
result says that for any convex body K of volume equal to 1, we can find a position
such that

C1LK jDnj�1=npW̃�1ðt þ TKÞpC2LK jDnj�1=n:

Furthermore, to prove that ‘‘for any convex body K of volume equal to 1 there exists a

position such that

C1jDnj�1=npW̃�1ðt þ TKÞpC2jDnj�1=n;

where C1;C240 are absolute constants’’ is a reformulation of the hyperplane
conjecture (see [19]). Note that the case i ¼ �2 would be exactly the hyperplane
conjecture. Now we know that we can reformulate the hyperplane conjecture in
terms of sharp estimates for the dual quermassintegrals of the convex bodies in the
range iAð�N; 0Þ,ð0; 1Þ:

Apart from this reformulation of the hyperplane conjecture, if we consider i-0 in
the last theorem, since

1

jK j

Z
tþTK

jxj�i
dx

� ��1=i

i-0
�! exp

1

jK j

Z
tþTK

log jxj dx

� �
;

we get that there exist affine position t þ TK such that

C1LK

jK j
jDnj

� �1=n

pexp
1

js þ T 0K j

Z
tþTK

log jxj dx

� �
pC2LK

jK j
jDnj

� �1=n

:

Moreover, if we could prove that there exists an absolute constant C such that for
every dimension n and every convex body K with jK j ¼ 1 there exists an affine

position K̂ ¼ s þ T 0K such that

exp
1

n

Z
Sn�1

rn

K̂
ðuÞlog rK̂ ðuÞsðuÞ

� �
pC

ffiffiffi
n

p
; ð15Þ

then we would have proved the hyperplane conjecture. Notice that inequality (15)
can be understood as a reverse of an inequality proved by Milman and Pajor [19, pp.
76–77].

Next we shall study the case iAðn � 1; nÞ,ðn;NÞ; but for convenience we let
a ¼ i � n:

Theorem 3.2. Let KDRn be a convex body. There exists an affine position of K;
t þ TK ; such that 0 belongs to the interior of t þ TK and for every aAð�1; 0Þ,ð0;NÞ

(i) W̃nþaðt þ TKÞpCðaÞlogðnÞajK j
�a
n jDnj

nþa
n ; if a40;

(ii) W̃nþaðt þ TKÞXCðaÞlogðnÞajK j
�a
n jDnj

nþa
n ; if �1oao0;

where CðaÞ is a constant which only depends on a:
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Proof. Suppose K is symmetric with respect to the origin (0-symmetric). Let

MðKÞ ¼ 1

sðSn�1Þ

Z
Sn�1

jjujjK dsðuÞ;

where jj 
 jjK is the norm on Rn whose unit ball is K : We use the well-known MM�-
estimate and so there exists a TASLðnÞ such that

MðTKÞMððTKÞ1ÞpC log n;

for some absolute constant C40 (this position is known as the c-position or mean
width position, see for instance [6,23]). Since

MðTKÞ ¼ jDnj�1
W̃nþ1ðTKÞ;

MððTKÞ1Þ ¼ jDnj�1
W̃nþ1ððTKÞ1Þ

and by using (3) and the Blaschke–Santaló inequality, we get that

W̃nþ1ððTKÞ1ÞX jðTKÞ1j
�1
n jDnj

nþ1
n

X jK j
1
njDnj1�

1
n;

so we obtain

W̃nþ1ðTKÞpC log njK j�
1
njDnj1þ

1
n: ð16Þ

Consider now the general case. Let aAð�1; 0Þ,ð0;NÞ: We use the same c-position
and so

W̃nþaðTKÞ ¼ 1

n

Z
Sn�1

jjujjaTK dsðuÞ

CCðaÞ jDnjffiffiffi
n

p
ðn þ a� 2Þ

a�1
2

Z
Rn

jjxjjaTK dgnðxÞ;

where ACB means here that the quotient A=B is bounded from above and from
below by absolute constants, CðaÞ is a constant depending on a and dgnðxÞ is the
canonical Gaussian probability on Rn: Indeed, by using polar coordinatesZ

Rn

jjxjjaTK dgnðxÞ ¼
2
a�2
2 Gðnþa

2
Þ

Gðn
2
þ 1ÞjDnj

Z
Sn�1

jjujjaTK dsðuÞ

CC

ffiffiffi
n

p
ðn þ a� 2Þ

a�1
2

e
a�2
2 sðSn�1Þ

n þ a� 2

n

� �n
2
Z

Sn�1

jjujjaTK dsðuÞ

CCðaÞ
ffiffiffi
n

p
ðn þ a� 2Þ

a�1
2

sðSn�1Þ

Z
Sn�1

jjujjaTK dsðuÞ:
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It is well known that the canonical Gaussian probability is log-concave and the
moments of order aAð�1;NÞ of a norm with respect to log-concave measures are
equivalent up to an absolute constant (see [12]), i.e. there exists an absolute constant
C40 such that

C�1

Z
Rn

jjxjj dgnðxÞp
Z
Rn

jjxjja dgnðxÞ
� �1=a

pC maxf1; ag
Z
Rn

jjxjj dgnðxÞ:

Then, if a40

W̃nþaðTKÞpCðaÞ jDnjffiffiffi
n

p
ðn þ a� 2Þ

a�1
2

Z
Rn

jjxjjTK dgnðxÞ
� �a

pCðaÞ jDnjffiffiffi
n

p
ðn þ a� 2Þ

a�1
2

ffiffiffi
n

p

sðSn�1Þ

Z
Sn�1

jjujjTK dsðuÞ
� �a

pCðaÞ n

n þ a� 2

� �a�1
2
jDnj1�aðW̃nþ1ðTKÞÞa

pCðaÞ n

n þ a� 2

� �a�1
2
ðlog nÞajK j�a=njDnj1þa=n

pCðaÞ log nð ÞajK j�a=njDnj1þa=n:

The case �1oao0 is similar.
For a general convex body K; we can assume that its centroid is at the origin.

Therefore |aK-ð�KÞDK and since K-ð�KÞ is a symmetric convex body, there
exist TASLðnÞ such that

W̃nþaðTKÞp W̃nþaðTðK-ð�KÞÞÞpCðaÞlogðnÞajK-ð�KÞj�
a
njDnj

nþa
n

pCðaÞlogðnÞajK j�
a
njDnj

nþa
n ;

since jK j1=np2jK-ð�KÞj1=n (see [20]). &

If we want to study the case iAð1; n � 1Þ; a trivial calculation shows that, by using
maximal volume positions, the dual Minkowski inequality can be reversed, but the
inequality obtained is far from being sharp. Instead of doing such a straightforward
computation, we will investigate the case of Bn

p balls where we can go further and get

sharper estimates as the following result shows.

Proposition 3.3. Let 1pppN: There exists Cp40 such that for every nAN and every

0oion

W̃iðBn
pÞXCminfi;n�ig

p jDnji=n jBn
pj
ðn�iÞ=n:
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Proof. It is easy to check that for every star body KDRn; if 0oion

W̃iðKÞ ¼ 1

n

Z
Sn�1

rKðuÞ
n�i

dsðuÞ ¼ n � i

n

Z þN

0

jfxAK ; jxj�i4tgj dt

¼ðn � iÞi
n

Z þN

0

jK-sDnj s�i�1 ds:

So we only have to give lower estimates for jBn
p-sDnj:

If 1ppp2;

W̃iðBn
pÞX

ðn � iÞi
n

Z n1=2�1=p

0

jDnjsn�i�1 ds þ
Z 1

n1=2�1=p

jBn
p-sDnjs�i�1 ds

" #

¼ðn � iÞi
n

1

n � i
jDnjðn1=2�1=pÞn�i þ

Z 1

n1=2�1=p

jBn
p-sDnjs�i�1 ds

� �
:

Notice that

Z 1

n1=2�1=p

jBn
p-sDnjs�i�1 dsX

Z 1

2n1=2�1=p

jBn
p-sDnjs�i�1 ds

¼
Z 1

2n1=2�1=p

jBn
pj 1�

jfxABn
p; jxj4sgj
jBn

pj

 !
s�i�1 ds;

hence, by using the estimates of the volume of the intersection of two cn
p balls (see

[24]) we get that

Z 1

n1=2�1=p

jBn
p-sDnjs�i�1 dsX

Z 1

2n1=2�1=p

jBn
pj 1� expð�cspnÞ

jBn
pj

 !
s�i�1 ds

XCpjBn
pj
Z 1

2n1=2�1=p

s�i�1 ds:

Therefore,

W̃iðBn
pÞX jDnji=njBn

pj
ðn�iÞ=n i

n
ðn1=2�1=pÞn�i jDnj

jBn
pj

 !ðn�iÞ=n
2
4

þ Cp

n � i

n

jBn
pj

jDnj

� �i=n
ni=p�i=2

2i

3
5

X jDnji=njBn
pj
ðn�iÞ=n i

n
Cn�i

p þ n � i

n
Ci

p

� �
:
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Now it is easy to check that if a; b40 such that aþ b ¼ 1 and 0oxo1; then

xminfa;bg
Xaxb þ bxa

X
1
2 xminfa;bg;

hence

W̃iðBn
pÞXjDnji=njBn

pj
ðn�iÞ=n i

n
Cn�i

p þ n � i

n
Ci

p

� �
X
1

2
jDnji=njBn

pj
ðn�iÞ=n

Cminfi;n�ig
p :

On the other hand, if 2ppoN;

W̃iðBn
pÞX

ðn � iÞi
n

Z n1=2�1=p

1

jBn
p-sDnj s�i�1 ds þ

Z þN

n1=2�1=p

jBn
pjs�i�1 ds

" #

¼ðn � iÞi
n

Z n1=2�1=p

1

jBn
p-sDnj s�i�1 ds þ 1

i
jBn

pjðn1=p�1=2Þi

" #
:

Now, since

jBn
p-sDnj ¼ jfxAsDn; jjxjjpp1gj

¼ snjDnj 1�
jfyADn; jjyjjp4s�1gj

jDnj

 !
;

by using the estimates of the intersection of two cn
p balls given by Schechtman and

Zinn [24] we can assert that if n is big enough

Z n1=2�1=p

1

jBn
p-sDnj s�i�1 dsX

Z n1=2�1=p

1
2

n1=2�1=p

sn�i�1jDnj 1�
expð�c n

s2
Þ

jDnj

� �
ds

XCjDnj
Z n1=2�1=p

1
2

n1=2�1=p

sn�i�1 ds:

Hence

W̃iðBn
pÞX jDnji=njBn

pj
ðn�iÞ=n

Cp

i

n

jDnj
jBn

pj

 !ðn�iÞ=n

ðn1=2�1=pÞn�i

2
4

þ n � i

n

jBn
pj

jDnj

� �i=n

ni=p�i=2

3
5

X jDnji=njBn
pj
ðn�iÞ=n n � i

n
Ci

p þ
i

n
Cn�i

p

� �

X
1

2
jDnji=njBn

pj
ðn�iÞ=n

Cminfi;n�ig
p :
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Note that if n is not ‘‘big enough’’ (i.e. 1pnpn0), we can obtain the same inequality
as before simply by adjusting the constant Cp: The case p ¼ N can be proved as

before but by considering 1=p ¼ 0: &
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