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Abstract

We prove an extension of the classical John’s Theorem, that characterices

the ellipsoid of maximal volume position inside a convex body by the exis-

tence of some kind of decomposition of the identity, obtaining some results

for maximal volume position of a compact and connected set inside a convex

set with nonempty interior. By using those results we give some estimates

for the outer volume ratio of bodies not necesarily convex.

1. Introduction and Notation

Throughout this paper, we consider Rn with the canonical basis (e1, . . . , en) and its usual
Euclidean structure 〈·, ·〉. Let Bn

2 = {x ∈ Rn ; |x| = 〈x, x〉1/2 ≤ 1} be the euclidean ball
on Rn. If K ⊆ Rn, then int K, Kc and ∂K will denote the interior, the complementary
and the border of K, respectively; conv(K) will be the convex hull of K, K0 will denote
the polar of K with respect to the origin, i.e. K0 = {y ∈ Rn ; 〈x, y〉 ≤ 1, ∀x ∈ K} and
vol (K) represents the Lebesgue measure on Rn of K.

Following [TJ], if K1 ⊆ K2 ⊆ Rn, we call a pair (x, y) ∈ Rn×Rn a contact pair for
(K1, K2) if it satisfies: i) x ∈ ∂K1 ∩ ∂K2, ii) y ∈ ∂K0

2 and iii) 〈x, y〉 = 1.
As it is usual y ⊗ x denotes the linear transformation on Rn defined by y ⊗ x(z) =

〈z, y〉x and In will be the identity map on Rn.
John’s ellipsoid theorem is a classical tool in the theory of convex bodies; it says

how far a convex body is from being an ellipsoid. John showed that each convex body
contains a unique ellipsoid of maximal volume and characterized it. The decomposition
of the identity associated to this characterization gives an effective method to introduce
an appropiated euclidean structure in finite dimensional normed spaces, when we con-
sider centrally symmetric convex bodies. We can state John’s theorem in the following
way:

Theorem ([J], [Ba2], [Ba3]). Let K be a convex body in Rn and suppose that the
euclidean ball Bn

2 is contained in K, then the following assertions are equivalent:
(i) Bn

2 is the ellipsoid of maximal volume contained in K,
(ii) there exist λ1, . . . , λm > 0 and u1, . . . , um ∈ ∂K ∩ ∂Bn

2 , with m ≤ n(n + 3)/2 such

that In =
m

∑

i=1

ui⊗ui and
m

∑

i=1

λiui = 0.

(iii) Bn
2 is the unique ellipsoid of maximal volume contained in K.
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One can consider this situation for any general couple of convex bodies (K1,K2)
or, even more, for any couple of compact sets in Rn instead of (Bn

2 , K). Suppose that
K1 is a compact set in Rn with vol (K1) > 0 and K2 is another compact set in Rn, with
intK2 6= ∅. A compactness argument shows that there exists an affine position of K1,
namely K̃1, such that K̃1 ⊆ K2 and

vol (K̃1) = max{vol (a + T (K1)); a + T (K1) ⊆ K2, a ∈ Rn, T ∈ GL(n)}.

This position K̃1 is called maximal volume position of K1 inside K2. Very re-
cently, Giannopoulos, Perisinaki and Tsolomitis have considered the convex situation
and proved the following

Theorem [G-P-T]. Let K1 ⊆ K2 be two smooth enough convex bodies in Rn such that
K1 is in maximal volume position inside K2. Then for every point z in the interior of K1,
there exist λ1, . . . , λN > 0, with N ≤ n2 + n + 1 and contact pairs for (K1− z,K2− z),

(xi − z, yi), (1 ≤ i ≤ N) such that: (i)
N

∑

i=1

λiyi = 0 and (ii) In =
N

∑

i=1

λiyi ⊗ xi.

Furthermore, if we assume the extra assumption for K1 to be a polytope and K2 to
have C(2 boundary with strictly positive curvature, then a center z can be chosen in

K1 \ {vertices of K1} for which we have (i), (ii) and also (iii)
1
n

N
∑

i=1

λixi = z.

The special case of considering K1 and K2 centrally symmetric convex bodies was
first observed by Milman (see [TJ], Theorem 14.5).

The aim of this paper is to extend this result to the non-convex case. We obtain a
general result which is valid for K1 a compact, connected set in Rn with vol (K1) > 0,
K1 ⊆ K2, where K2 is a compact in Rn such that int conv(K2) 6= ∅ and K1 is in maximal
volume position inside conv(K2) (no extra assumptions on the boundary of the bodies
are used).

The method we develop to prove our result is different from that in [G-P-T]. We
follow the ideas given in [Ba3], with suitable modifications and the main result we
achieve is the following

Theorem 1.1. Let K1 ⊆ Rn be a connected, compact set with vol (K1) > 0 and
K2 ⊆ Rn be a compact set such that K1 ⊆ K2. If K1 is in maximal volume position
inside conv(K2), for every z ∈ int conv(K2) there exist N ∈ N, N ≤ n2 + n, (xi, yi)
contact pairs for (K1 − z, K2 − z) and λi > 0 for all i = 1, . . . , N such that:

N
∑

k=1

λk yk⊗xk =
1
n

In

N
∑

k=1

λk yk = 0.

It is well known that if there exists a decomposition of the identity in the sense of
theorem 1.1 we can not expect that K1 were the unique maximal volume position inside
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K2 even for convex bodies, as it can be shown by considering simpleces or octahedra
inscribed in the cube. Furthermore, an equivalence as it appears in John’s Theorem is
not true in general. We study this problem and as a consequence we obtain

Theorem 1.2. Let K1 ⊆ Rn be a connected, compact set with vol (K1) > 0 and
K2 ⊆ Rn be a compact set such that K1 ⊆ K2. Let z be a fixed point in int conv (K2).
Then the following asumptions are equivalents:
(i) vol (K1) = max{vol (a + S(K1)); a ∈ Rn, a + S(K1) ⊆ conv(K2)}, where S runs

over all symmetric positive definite matrices.
(ii) There exist N ∈ N, N ≤ n2+3n

2 , (xi, yi) contact pairs for (K1 − z,K2 − z) and
λi > 0 for all i = 1, . . . , N such that:

N
∑

k=1

λk (yk⊗xk + xk⊗yk) =
1
n

In (1)

N
∑

k=1

λkyk = 0.

(iii) K1 is the unique position of K1 verifying (i).

In section 3 we extend the upper estimates of the volume ratio proved in [G-P-T]
by defining the outer volume ratio of a compact K1 with respect to a convex body K2,
by considering an appropriate index. We follow the methods that appears in [G-P-T]
by using Brascamp-Lieb and reverse Brascamp-Lieb inequalities as the main tools.

2. Proofs of Main Theorems
Throughout this section K1 will be a connected, compact set in Rn with vol (K1) > 0
and K2 will be a compact in Rn such that K1 ⊆ K2. Therorem 1.1 gives us a sufficient
condition for the existence of some kind of John’s decomposition of the identity and it
follows the spirit of the work of K.M. Ball (see for instance [Ba2] or [Ba3]).

Proof of Theorem 1.1: First of all, notice that int conv (K2) 6= ∅, since K1 ⊆
conv (K2) and vol (K1) > 0. Without loss of generality we can assume that z = 0.
Furthermore, since K1 ⊆ K2 and conv(K2)0 = K0

2 a contact pair for (K1, conv(K2)) is
also a contact pair for (K1,K2), so, we may suppose conv(K2) = K2.

Let A = {(y⊗x, y) ∈ L(Rn,Rn)×Rn ; (x, y) is a contact pair for (K1,K2)}. By using
the maximality of the volume of K1, the convexity of K2 and since 0 ∈ intK2 it is
easy to prove that A is a non empty subset of L(Rn,Rn)×Rn. We will show that
( 1

nIn, 0) ∈ conv(A), where conv(A) is the convex hull of A in L(Rn,Rn)×Rn.
Suppose that ( 1

nIn, 0) /∈ conv(A). Then by using a separation theorem, there exist
H ∈ L(Rn,Rn) and b ∈ Rn such that:

〈 1
n

In, H〉tr + 〈0, b〉 > 〈y⊗x,H〉tr + 〈b, y〉

for all (x, y) contact pair and where 〈·, ·〉tr denotes the trace duality on L(Rn,Rn), i.e.
〈T, S〉tr = tr ST .
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Thus for every contact pair (x, y)

1
n

trH > 〈Hx, y〉+ 〈b, y〉. (2)

There is no loss of generality to assume tr H = 0. Indeed, we can choose H̃ = H −
tr H

n In ∈ L(Rn,Rn), which is a linear operator with trace zero that verifies:

〈H̃x, y〉+ 〈b, y〉 = 〈Hx, y〉 − tr H
n
〈x, y〉+ 〈b, y〉 < 0 =

tr H̃
n

for all (x, y) contact pair. By using the linear map defined by the matrix H and b ∈ Rn

we are going to construct a family of affine maps Sδ’s, with 0 < δ < δ1, such that
| det Sδ| ≥ 1 and Sδ(K1) ⊆ intK2, which contradicts the maximality of the volume of
K1. We will divide the proof of that fact into 3 steps.

By continuity, there exists a positive number δ0 > 0 such that In− δH is invertible
for all 0 < δ < δ0. For each 0 < δ < δ0 we take Sδ : Rn−→Rn defined by Sδ(z) =
(In − δH)−1(z) + δ(In − δH)−1(b).

Step 1: There exists 0 < δ1 ≤ δ0 such that Sδ(K1) ∩ ∂K2 = ∅, for all 0 < δ < δ1.
Consider

M =
{

x ∈ ∂K2 ; ∃ y ∈ K0
2 such that 〈x, y〉 = 1 and 〈Hx, y〉+ 〈b, y〉 ≥ 0

}

.

It is easy to check that M is a compact subset of ∂K2 and also M ∩ ∂K1 = ∅. If there
exists an x ∈ M ∩ ∂K1 ⊆ ∂K2 ∩ ∂K1, there would exist y ∈ K0

2 such that 〈x, y〉 = 1
(so (x, y) is a contact pair) and 〈Hx, y〉+ 〈b, y〉 ≥ 0 = tr H which would contradict (2).
Therefore M ⊆ Kc

1; by compactness of M and by continuity, there exists 0 < δ1 (≤ δ0)
such that (In − δH)(M)− δb ⊆ Kc

1, for all 0 < δ < δ1, and so Sδ(K1) ∩M = ∅.
Now let x ∈ ∂K2. We will prove that x /∈ Sδ(K1). We only have to consider the

case x /∈ M . Then
〈Hx, y〉+ 〈b, y〉 < 0

for all y ∈ K0
2 such that 〈x, y〉 = 1. Since 0 ∈ int K2 and K2 is a convex body there

exists y0 ∈ K0
2 such that 〈x, y0〉 = 1, so we have that

〈x− δHx− δb, y0〉 = 1− δ (〈Hx, y0〉+ 〈b, y0〉) > 1

for all δ > 0 and in particular for all 0 < δ < δ1. Hence x − δHx − δb /∈ K1, or
equivalently x /∈ Sδ(K1).

Step 2: For every 0 < δ < δ1 there exists λδ > 1 such that λδ Sδ(K1) ⊆ int K2.
Note that Sδ(K1) is connected and Sδ(K1) ∩ ∂K2 = ∅, therefore either Sδ(K1) ⊆

intK2 or Sδ(K1) ⊆ Kc
2. Fix x ∈ K1 ∩ intK2, it exists since vol (K1) 6= 0, and take

Cx = {Sδ(x) ; 0 ≤ δ < δ1} .

It is easy to check that Cx is connected, Cx ∩ ∂K2 = ∅, Cx ∩ int K2 6= ∅ and Cx ⊆
int K2. Therefore Sδ(K1) ∩ intK2 6= ∅ and by connectedness of K1 we conclude that
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Sδ(K1) ⊆ intK2, for all 0 < δ < δ1. Now, by a compactness argument and the fact that
Sδ(K1) ⊆ intK2 we conclude that for every 0 < δ < δ1 there exists λδ > 1 such that
λδ Sδ(K1) ⊆ intK2.

Step 3: vol (λδ Sδ(K1)) > vol (K1), for all 0 < δ < δ1 .
Indeed,

vol (λδ Sδ(K1)) =
λn

δ vol (K1)
|det(In − δH)|

.

Now, by using the inequality between arithmetic mean and geometric mean (denoted
briefly AM-GM inequality) we obtain that |det(In − δH)|

1
n ≤ 1

n tr (In − δH) = 1, and
so

vol (λδ Sδ(K1)) ≥ λn
δ vol (K1) > vol (K1).

Therefore, if ( 1
nIn, 0) /∈ convA, then K1 is not in maximal volume position inside K2.

Note that the fact that N ≤ n2 + n is deduced from the classical Caratheodory’s
theorem since {(y⊗x − 1

nIn, y) ; (x, y) is a contact pair} is contained in a (n2 + n− 1)
dimensional vector space.

Remarks.
1) For every K ⊆ Rn with vol (K) > 0 it is easy to check that K is in maximal

volume position inside conv (K).
2) We note that K1 ⊆ K2 and K1 is in maximal volume position inside conv (K2)

implies that K1 is in maximal volume position inside K2. The converse is not true, as
the following example shows. Consider

K1 = {x ∈ Rn; ‖x‖∞ = max
1≤i≤n

|xi| ≤ 1}

K2 = K1 ∪ 2∂K1.

It is trivial to see that K1 is in maximal volume position inside K2, K1 is not in maximal
volume position inside conv(K2) and there is no decomposition of the identity as before,
since there are no contact pairs for (K1, K2).

Corolary 2.1. Let K1 ⊆ K2 ⊆ Rn be as in the theorem 1.1. If conv (K1) is a polytope,
conv (K2) has C(2) boundary with strictly positive curvature and K1 is maximal volume
position inside conv (K2), then there exist z ∈ conv (K1), N ∈ N, N ≤ n2 + n, (xk, yk)
contact pairs of (K1 − z,K2 − z) and λk > 0 for all k = 1, . . . , N such that

N
∑

k=1

λk yk⊗xk =
1
n

In

N
∑

k=1

λk yk =
N

∑

k=1

λk xk = 0.

Proof: It is easy to prove that the fact that K1 is in maximal volume position inside
conv (K2) implies that conv (K1) is in maximal volume position inside conv (K2) and
∂K1 ∩ ∂(conv (K2)) = ∂(conv (K1)) ∩ ∂(conv (K2)). Therefore we can assume that
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K1 is a polytope and K2 is a convex which has a C(2) boundary with strictly positive
curvature. But notice that this case was studied by A. Giannopoulos, I. Perissinaki and
A. Tsolomitis (see [G-P-T]) concluding the result needed.

Now we can ask if the existence of some kind of decomposition of the identity in Rn

would imply that K1 were the unique maximal volume position inside K2, as it happens
in the classical John’s Theorem. It is well known that we can’t expect such a thing,
simply by considering simplices or octahedra inscribed in the cube. Theorem 1.2 shows,
loosely speaking, that not only the existence of a “modified” John’s decomposition of
the identity for a pair (K1,K2) implies that K1 is the unique “pseudo” maximal volume
position inside K2, but also that this “pseudo” maximality implies the existence of a
“modified” decomposition of the identity too.

Proof of Theorem 1.2: As before, we can show that int conv (K2) 6= ∅. We can also
assume z = 0 and K2 convex.

(i) ⇒ (ii) Let B = {( 1
2 (y⊗x + x⊗y), y) ∈ L(Rn,Rn)×Rn ; (x, y) is a contact pair}.

By using the maximality of the volume of K1, the convexity of K2 and since 0 ∈ int K2

it is easy to prove that B is a non empty subset of L(Rn,Rn)×Rn. As in the proof of
theorem 1.1, we will show that ( 1

nIn, 0) ∈ conv (B).
Suppose, on the contrary, that ( 1

nIn, 0) /∈ conv (B). Then by using a separation
theorem, there exist H ∈ L(Rn,Rn) and θ ∈ Rn such that:

〈 1
n

In,H〉tr + 〈0, θ〉 >
1
2
(〈y⊗x,H〉tr + 〈x⊗y, H〉tr) + 〈θ, y〉

for all (x, y) contact pair. Therefore

1
n

trH >
1
2
(〈Hx, y〉+ 〈x,Hy〉) + 〈θ, y〉.

There is no loss of generality to assume that:
1) H is a symmetric matrix because in other case we could take H̃ = 1

2 (H + H?)
which is a symmetric matrix that verifies that 〈H̃x, y〉 + 〈x, H̃y〉 = 〈Hx, y〉 + 〈x, Hy〉
and therefore for every contact pair (x, y)

1
n

trH > 〈Hx, y〉+ 〈θ, y〉.

2) tr H =0 since in other case we can choose H̃ = H − tr H
n In ∈ L(Rn,Rn) which

is a linear operator with trace zero that verifies:

〈H̃x, y〉+ 〈θ, y〉 = 〈Hx, y〉 − trH
n
〈x, y〉+ 〈θ, y〉 < 0 =

tr H̃
n

for all (x, y) contact pair.
Therefore there exist a symmetric matrix H ∈ L(Rn,Rn) with tr H = 0 and θ ∈ Rn

such that:
0 > 〈Hx, y〉+ 〈θ, y〉
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for all (x, y) contact pair. By using the linear map defined by the matrix H and θ ∈ Rn

we are going to construct a family of affine maps Tδ(·) = Sδ(·) + bδ, with Sδ symmetric
positive definite matrix for all 0 < δ < δ1, such that | detSδ| ≥ 1 and Tδ(K1) ⊆ intK2,
which contradicts the maximality of K1.

By continuity, there exists a positive number δ0 > 0 such that In− δH is invertible
and symmetric positive definite for all 0 < δ < δ0. For each 0 < δ < δ0 we take
Tδ : Rn−→Rn defined by Tδ(z) = (In − δH)−1(z) + δ(In − δH)−1(θ). By the same
methods as in the proof of Theorem 1.1, we can show that:

1) There exists 0 < δ1 ≤ δ0 such that Tδ(K1) ∩ ∂K2 = ∅, for all 0 < δ < δ1.
2) For every 0 < δ < δ1 there exists λδ > 1 such that λδ Tδ(K1) ⊆ intK2.
3) vol (λδ Tδ(K1)) > vol (K1), for all 0 < δ < δ1

which contradicts the maximality of K1.
(ii) ⇒ (iii) Let T (·) = S(·) + a be such that T (K1) ⊆ K2, a ∈ Rn and S is a

symmetric positive definite matrix. It is well known that we can find an orthogonal
matrix U ∈ O(n) and a diagonal matrix D with diagonal elements α1, . . . , αn > 0 such
that S = U?D U and therefore

vol (T (K1)) = |det (U?D U)| vol (K1) =

(

n
∏

k=1

αk

)

vol (K1). (3)

Hence we have to estimate
∏

αk. On the one hand, we obtain that

〈U?D Ux, y〉 =
n

∑

j=1

αj〈U?ej , x〉〈U?ej , y〉

for all x, y ∈ Rn, by straightforward computation.
On the other hand, if (x, y) is a contact pair then 〈Tx, y〉 ≤ 1 and therefore

1 =
N

∑

k=1

λk ≥
N

∑

k=1

λk 〈Txk, yk〉 =
N

∑

k=1

λk 〈U?D Uxk, yk〉

=
N

∑

k=1

λk

n
∑

j=1

αj〈U?ej , xk〉〈U?ej , yk〉 =
n

∑

j=1

(

αj

N
∑

k=1

λk 〈U?ej , xk〉 〈U?ej , yk〉

)

=
1
n

n
∑

j=1

αj〈U?ej , U?ej〉 =
1
n

n
∑

j=1

αj .

Now by using the AM-GM inequality, we conclude that 1 ≥ 1
n

∑

αj ≥ (
∏

αj)
1
n , which

implies that in (3) we obtain vol (T (K1)) ≤ vol (K1).
In addition to this, note that if T is such that vol (T (K1)) = vol (K1), then, by

the equality case in the AM-GM inequality we would have that α1 = . . . = αn = 1, so
T = In + a. Therefore we would obtain that

1 ≥ 〈Tx, y〉 = 〈x + a, y〉 = 1 + 〈a, y〉
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for all (x, y) contact pair and, in particular, 〈a, yk〉 ≤ 0 for all (xk, yk) contact pair that
appears in the decomposition of the identity. But we also would have that:

N
∑

k=1

λk〈a, yk〉 =
N

∑

k=1

〈a, λk yk〉 = 0

which would imply that, 〈a, yk〉 = 0 for all (xk, yk) and then we would conclude that

1
n
〈a, a〉 =

N
∑

k=1

λk〈a, yk〉〈a, xk〉 = 0.

Hence T =In.

Corolary 2.2. Let K1 ⊆ K2 be as in theorem 1.1. Fix z ∈ int conv (K2). Then the
following assumptions are equivalents:
(i) vol (K1) = max{vol (a + S(K1)); a ∈ Rn, a + S(K1) ⊆ conv(K2)}, where S runs

over all symmetric positive definite matrices.
(ii) For every S ∈ GL(n) symmetric matrix and every θ ∈ Rn there exists a contact

pair (x, y) for (K1 − z, K2 − z) such that

tr S
n

≤ 〈Sx, y〉+ 〈θ, y〉.

Proof: As before, we can show that int conv (K2) 6= ∅. We can also assume z = 0 and
K2 convex.

(i) ⇒ (ii) By Theorem 1.2 there exist (xi, yi) contact pairs for (K1 − z, K2 − z)
and λi > 0 for all i = 1, . . . , N such that:

N
∑

k=1

λk (yk⊗xk + xk⊗yk) =
1
n

In and
N

∑

k=1

λkyk = 0.

Suppose that there would exist S ∈ GL(n) symmetric matrix and θ ∈ Rn such that for
every (x, y) contact pair

trS
n

> 〈Sx, y〉+ 〈θ, y〉.

Therefore

tr S
n

=
trS
n

+ 〈θ,
N

∑

i=1

λiyi〉 = 〈(S, θ), (
1
n

In,
N

∑

i=1

λkyk)〉 =

=
N

∑

i=1

λi〈(S, θ), (
1
2
(yi⊗xi + xi⊗yi), yi)〉 =

N
∑

i=1

λi(〈Sxi, yi〉+ 〈θ, yk〉) <

<
N

∑

i=1

λi
tr S
n

=
tr S
n
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which leads us to a contradiction.
(ii) ⇒ (i) By using the hypothesis, for every H ∈ GL(n), θ ∈ Rn, there exists a

contact pair such that

1
n

tr H >
1
2
(〈Hx, y〉+ 〈x,Hy〉) + 〈θ, y〉

which make that ( 1
n , 0) ∈ conv ({(1

2 (y⊗x + x⊗y), y) ∈ L(Rn,Rn)×Rn ; where (x, y) is
a contact pair })

Remarks.
1) If K1 is in maximal volume position inside conv (K2), then K1 is unique if we only

consider affine transformations given by symmetric, positive definite matrices. Indeed,
this is due to the fact that 1

nI =
∑N

k=1 λk yk⊗xk implies that 1
nI =

∑N
k=1 λk xk⊗yk.

2) If we suppose either K1 =Bn
2 or conv(K2)=Bn

2 in the last theorem, we obtain a
stronger conclusion, since the existence of contact pairs (xk, yk) and λk > 0 such that

N
∑

k=1

λk

2
(yk⊗xk + xk⊗yk) =

1
n

In and
N

∑

k=1

λk yk = 0

is equivalent to the fact that vol (K1) = max{vol (a + T (K1)) such that a + T (K1) ⊆
conv (K2), a ∈ Rn and T ∈ GL(n)} and this maximum is only attained at K1, up
to orthogonal transformation (i.e. if vol (T (K1)) = vol (K1), then T is an orthogonal
transformation). This is the classical John’s result. Let’s see it briefly.

Suppose that there exists a decomposition of the identity (in the sense of (1)). If
we take conv(K2) = Bn

2 and T is an affine transformation such that T (K1) ⊆ Bn
2 ,

then there exist orthogonal matrices U, V , a diagonal matrix D with diagonal elements
α1, . . . , αn > 0 and a ∈ Rn such that T (·) = V DU(·) + a. Now if we choose T̃ (·) =
U?DU(·) + (V U)?(a) then it is easy to check that this map verifies:

(a) U?DU is a symmetric positive definite matrix.

(b) T̃ (K1) ⊆ (V U)?(Bn
2 ) = Bn

2 (since T̃ (·) = (V U)?T (·)).
(c) vol (T̃ (K1)) = vol (T (K1)).

Therefore by using (ii) ⇒ (iii) in theorem 1.2 and since T̃ satisfies (a) and (b) we
conclude that

vol (T (K1)) = vol (T̃ (K1)) ≤ vol (K1)

and the equality is only attained if T̃ = In, and so T is an orthogonal transformation.
Note that a similar reasoning can be applied to the case K1 = Bn

2 .
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3. Some estimates for the outer volume ratio of compact sets

We can extend the notion of volume ratio to a pair (K1,K2) ⊆ Rn×Rn, where K2 is a
convex body and K1 is a compact set with vol (K1) > 0, simply by

Definition 3.1. Let K1 ⊆ Rn be compact set with vol (K1) > 0 and K2 ⊆ Rn be a
convex body. We define outer volume ratio as

vr(K2; K1) = inf

{

vol (K2)
1
n

vol (T (K1))
1
n

; T affine transformationwith T (K1) ⊆ K2

}

.

It is quite easy to show that we cannot expect any upper estimate without asuming
extra asumptions. We are going to introduce an index for compact sets with positive
volume in order to get general bounds, depending only on the dimension and on the
index, for the outer volume ratio with respect to a convex body.

We recall that a set K ⊆ Rn is p-convex, (0 < p ≤ 1) if λx + µy ∈ K, for every
x, y ∈ K and for every λ, µ ≥ 0 such that λp + µp = 1. The p-convex hull of a set K,
which we denote by p− conv (K), is defined as the intersection of all p-convex sets that
contain K. It is easy to see that 0 ∈ p− conv (K).

Definition 3.2. Let K ⊆ Rn a compact set. We define p(K) as

p(K) =
{

sup {p ∈ (0, 1] ; ∃a ∈ Rn with p− conv{(extK)− a} ⊆ K − a} if it exists
0 otherwise

where extK denotes the set of extreme points of K.

Remarks:
1) If p ∈ (0, 1] verifies that there exist an a ∈ Rn such that p−conv{(extK)−a} ⊆ K−a
then a ∈ K, since 0 is inside the clausure of p− conv{(extK)− a}, which is embedded
in K − a and so a ∈ K.
2) p(K) is an affine invariant of K, i.e. if T = a + S is an affine transformation on Rn

with a ∈ Rn and S ∈ GL(n) then p(T (K)) = p(K).
3) The supremum in the last definition can be replaced by maximum, simply by using
compactness and continuity arguments.
4)If K is a p-convex body with 0 < p ≤ 1 then p(K) ≥ p, but if 0 < p < 1 then there
are compact sets K with p(K) ≥ p which are not p-convex. Notice that p(K) = 1 if
and only if K is convex, simply by using Krein-Milman’s theorem.

Now we are going to state and prove some upper estimates for the volume ratio of
a pair (K1,K2) where K1 is a compact set with vol (K1) > 0 and p(K1) > 0, and K2

is a convex body. We can assume that K1 is in maximal volume position inside K2,
since in other case, there would exist an affine transformation T such that T (K1) would
be in maximal volume position inside K2 and therefore K1 would work with the pair
(T (K1),K2). Hence if p(K1) = p,

vr(K2; K1) =
vol (K2)

1
n

vol (K1)
1
n
≤ vol (K2)

1
n

vol (p− conv {(extK1)− a}) 1
n
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for some a ∈ K1. Therefore

vr(K2; K1) ≤
vol (K2 − a)

1
n

vol (conv {(extK1)− a})
1
n

vol (conv {(extK1)− a})
1
n

vol (p− conv {(extK1)− a})
1
n

.

It can be shown that conv {(extK1)− a} = conv (K1 − a) and since conv (K1 − a) is in
maximal volume position inside K2 − a we get

vr(K2; K1) ≤ vr(K2; conv (K1))
vol (conv {(extK1)− a}) 1

n

vol (p− conv {(extK1)− a}) 1
n

.

It is easy to check that conv {(extK1) − a} ⊆ n
1
p−1 (p− conv {(extK)− a}). Indeed,

since a ∈ K1 then

conv {(extK1)− a} = conv (K1 − a) = conv {∪x∈K1 [0, x− a]}

and we can use a stronger version of Caratheodory’s theorem appearing in [E] that
asserts that for every x ∈ conv {(extK1) − a} there exist xi ∈ (extK) − a and αi ≥ 0,
i = 1, . . . , n such that x =

∑n
i=1 αixi and

∑n
i=1 αi = 1. Therefore

(

n
∑

i=1

αp
i

) 1
p

≤ n
1
p−1

n
∑

i=1

αi,

which implies that x ∈ n
1
p−1p− conv {(extK1)− a}. On the other hand a result of Gi-

annopoulos, Perissinaki and Tsolomitis (see [G-P-T]) shows that vr(K2; conv {(extK1)−
a}) ≤ n and thus we sumarize all these things in the following result

Proposition 3.3. Let K1,K2 ⊆ Rn be such that K1 is a compact set with vol (K1) > 0,
p(K1) = p > 0 and K2 a convex body. Then

vr(K2; K1) ≤ n
1
p .

Next we are going to prove that if K1 or K2 has some kind of symmetry properties
then this general estimate can be slightly improved by using decompositions of the
identity in the sense of theorem 1.1, following the spirit of K.M. Ball (see [Ba1]) and A.
Giannopoulos, I. Perisinaki, A. Tsolomitis ([G-P-T]). We start with a result which can
be found in [G-P-T] and whose proof involves Cauchy-Binet formula.

Lemma 3.4. Let λ1, . . . , λN > 0. Let x1, . . . , xN and y1, . . . , yN be vectors in Rn

satisfying 〈xk, yk〉 = 1, for all k = 1, . . . , N and
N

∑

k=1

λk yk⊗xk = In. Then DxDy ≥ 1,

where Dx and Dy are defined by

Dx = inf

{

det(
∑N

k=1 λkαkxk⊗xk)
∏N

k=1 αλk
k

; αk > 0, k = 1, . . . , N

}

(4)

11



Dy = inf

{

det(
∑N

k=1 λkαkyk⊗yk)
∏N

k=1 αλk
k

; αk > 0, k = 1, . . . , N

}

. (5)

Proposition 3.5. Let K1,K2 ⊆ Rn be such that K1 is a symmetric compact set with
vol (K1) > 0, p(K1) = p > 0 and K2 is a symmetric convex body. Then

vr(K2; K1) ≤ n!
1
n n

1
p−1.

Proof: First of all it is easy to check that we can assume that K1 and K2 are centrally
symmetric and so it is ext K1. By using the same arguments than before we conclude
that

vr(K2; K1) ≤ vr(K2; conv (K1))n1/p−1.

Next we are going to give an upper estimate for vr(K2; L), where K2 and L = conv (K1)
are centrally symmetric convex bodies and L is in maximal volume position inside K2.

By using theorem 1.1, we can find contact pairs (xi, yi) and λi > 0, for all i =
1, . . . , N , N ≤ n2 + n, such that

N
∑

k=1

λk yk⊗xk = In and
N

∑

k=1

λk yk = 0.

If we take X = conv {±x1, . . . ,±xN} ⊆ L and Y = {y ∈ Rn; |〈y, yk〉| ≤ 1 k = 1, . . . , N}
K2 ⊆ Y , we obtain that

vr(K2;L) =
vol (K2)

1
n

vol (L)
1
n
≤ vol (Y )

1
n

vol (X)
1
n

.

Therefore if we find some upper estimate for vol (Y ) and lower estimate for vol (X) we
will obtain some upper estimates for vr(K2;K1).

Claim 1: vol (Y ) ≤ 2n√
Dy

Consider gj : R −→ R, j = 1, . . . , N , defined by gj(t) = χ[−1,1](t). By using the
Brascamp-Liev inequality (see [Bar]) we obtain that

∫

Rn

N
∏

k=1

(gk(〈x, yk〉))λk dx ≤ 1
√

Dy

N
∏

k=1

(∫

R
gk(t) dt

)λk

=
1

√

Dy

(∫ 1

−1
dt

)

∑

λk

where Dy was defined in (5). On the other hand, we conclude that

∫

Rn

N
∏

k=1

(gk(〈x, yk〉))λk dx =
∫

Rn
χY (x) dx = vol (Y ).

Therefore vol (Y ) ≤ 2n√
Dy
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Claim 2: vol (X) ≥ 2n
√

Dx
n!

We define for every x ∈ Rn

N(x) = inf

{

N
∑

k=1

|αk|; x =
N

∑

k=1

αk xk

}

which is an integrable function that verifies

∫

Rn
e−N(x) dx =

∫

Rn
sup

{

N
∏

k=1

e−αp
k ; αk ≥ 0, x =

N
∑

k=1

αkxk

}

dx

=
∫

Rn
sup

{

N
∏

k=1

fk(θk)λk ; x =
N

∑

k=1

λkθkxk

}

dx

where fk : R −→ R is defined by fk(t) = e−|t|. Now, if we use the reverse of the
Brascamp-Liev inequality (see [Bar]) we can assert that

∫

Rn
sup

{

N
∏

k=1

fk(θk)λk ; x =
N

∑

k=1

λkθkxk

}

dx ≥
√

Dx

N
∏

k=1

(∫

R
fk(t) dt

)λk

=
√

Dx

N
∏

k=1

2λk

=
√

Dx2n

(6)

where Dx was defined in (4).
On the other hand, we can compute directly the integral of e−N(x) by

∫

Rn
e−N(x) dx =

∫

Rn

∫ +∞

N(x)
e−t dt dx =

∫ +∞

0
e−t

∫

{N(x)≤t}
dxdt.

It is easy to check that {x ∈ Rn; N(x) ≤ t} = tX, for all t > 0, and hence

∫

Rn
e−N(x) dx =

∫ +∞

0
e−t tn vol (X) dt = n! vol (X). (7)

So, combining (6) and (7) we conclude the desired lower estimate for vol (X) and by
using Claim 1, Claim 2 and lemma 3.4 we obtain that

vr(K2;L) ≤ n!
1
n

and hence, the result holds.

By using similar arguments we can prove the following result
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Proposition 3.6. Let K1,K2 ⊆ Rn are such that K1 is a compact set with vol (K1) >
0, p(K1) = p > 0 and K2 is a convex body, then:
(1) If K1 is symmetric, vr(K2; K1) ≤ vr(K2; K1) ≤ e

2 (n!)
1
n n

1
p−1.

(2) If K2 is symmetric,vr(K2; K1) ≤ vr(K2;K1) ≤ 2 (n!)
1
n n

1
p−1.

Proof:
(1) Take g̃j(t) = etχ(∞,1](t) instead of gj(t) in the proof of proposition 3.5.
(2) Take f̃j(t) = e−tχ[0,+∞)(t) instead of fj(t) in the proof of proposition 3.5 and
substitute N(x) by

Ñ(x) =











inf

{

N
∑

k=1

αk; αk ≥ 0, x =
N

∑

k=1

αk xk

}

if it exists

+∞ otherwise.
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