JOHN'S DECOMPOSITION OF THE IDENTITY IN THE NON-CONVEX CASE

Jesus Bastero* and Miguel Romance**

Abstract

We prove an extension of the classical John's Theorem, that characterices the ellipsoid of maximal volume position inside a convex body by the existence of some kind of decomposition of the identity, obtaining some results for maximal volume position of a compact and connected set inside a convex set with nonempty interior. By using those results we give some estimates for the outer volume ratio of bodies not necesarily convex.

1. Introduction and Notation

Throughout this paper, we consider \mathbb{R}^{n} with the canonical basis $\left(e_{1}, \ldots, e_{n}\right)$ and its usual Euclidean structure $\langle\cdot, \cdot\rangle$. Let $B_{2}^{n}=\left\{x \in \mathbb{R}^{n} ;|x|=\langle x, x\rangle^{1 / 2} \leq 1\right\}$ be the euclidean ball on \mathbb{R}^{n}. If $K \subseteq \mathbb{R}^{n}$, then int K, K^{c} and ∂K will denote the interior, the complementary and the border of K, respectively; conv (K) will be the convex hull of K, K^{0} will denote the polar of K with respect to the origin, i.e. $K^{0}=\left\{y \in \mathbb{R}^{n} ;\langle x, y\rangle \leq 1, \forall x \in K\right\}$ and $\operatorname{vol}(K)$ represents the Lebesgue measure on \mathbb{R}^{n} of K.

Following [TJ], if $K_{1} \subseteq K_{2} \subseteq \mathbb{R}^{n}$, we call a pair $(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ a contact pair for (K_{1}, K_{2}) if it satisfies: i) $x \in \partial K_{1} \cap \partial K_{2}$, ii) $y \in \partial K_{2}^{0}$ and iii) $\langle x, y\rangle=1$.

As it is usual $y \otimes x$ denotes the linear transformation on \mathbb{R}^{n} defined by $y \otimes x(z)=$ $\langle z, y\rangle x$ and I_{n} will be the identity map on \mathbb{R}^{n}.

John's ellipsoid theorem is a classical tool in the theory of convex bodies; it says how far a convex body is from being an ellipsoid. John showed that each convex body contains a unique ellipsoid of maximal volume and characterized it. The decomposition of the identity associated to this characterization gives an effective method to introduce an appropiated euclidean structure in finite dimensional normed spaces, when we consider centrally symmetric convex bodies. We can state John's theorem in the following way:

Theorem ([J], [Ba2], [Ba3]). Let K be a convex body in \mathbb{R}^{n} and suppose that the euclidean ball B_{2}^{n} is contained in K, then the following assertions are equivalent:
(i) B_{2}^{n} is the ellipsoid of maximal volume contained in K,
(ii) there exist $\lambda_{1}, \ldots, \lambda_{m}>0$ and $u_{1}, \ldots, u_{m} \in \partial K \cap \partial B_{2}^{n}$, with $m \leq n(n+3) / 2$ such that $I_{n}=\sum_{i=1}^{m} u_{i} \otimes u_{i}$ and $\sum_{i=1}^{m} \lambda_{i} u_{i}=0$.
(iii) B_{2}^{n} is the unique ellipsoid of maximal volume contained in K.

[^0]One can consider this situation for any general couple of convex bodies (K_{1}, K_{2}) or, even more, for any couple of compact sets in \mathbb{R}^{n} instead of $\left(B_{2}^{n}, K\right)$. Suppose that K_{1} is a compact set in \mathbb{R}^{n} with $\operatorname{vol}\left(K_{1}\right)>0$ and K_{2} is another compact set in \mathbb{R}^{n}, with int $K_{2} \neq \emptyset$. A compactness argument shows that there exists an affine position of K_{1}, namely \tilde{K}_{1}, such that $\tilde{K}_{1} \subseteq K_{2}$ and

$$
\operatorname{vol}\left(\tilde{K}_{1}\right)=\max \left\{\operatorname{vol}\left(a+T\left(K_{1}\right)\right) ; a+T\left(K_{1}\right) \subseteq K_{2}, a \in \mathbb{R}^{n}, T \in G L(n)\right\}
$$

This position \tilde{K}_{1} is called maximal volume position of K_{1} inside K_{2}. Very recently, Giannopoulos, Perisinaki and Tsolomitis have considered the convex situation and proved the following

Theorem [G-P-T]. Let $K_{1} \subseteq K_{2}$ be two smooth enough convex bodies in \mathbb{R}^{n} such that K_{1} is in maximal volume position inside K_{2}. Then for every point z in the interior of K_{1}, there exist $\lambda_{1}, \ldots, \lambda_{N}>0$, with $N \leq n^{2}+n+1$ and contact pairs for $\left(K_{1}-z, K_{2}-z\right)$, $\left(x_{i}-z, y_{i}\right),(1 \leq i \leq N)$ such that: (i) $\sum_{i=1}^{N} \lambda_{i} y_{i}=0$ and (ii) $I_{n}=\sum_{i=1}^{N} \lambda_{i} y_{i} \otimes x_{i}$. Furthermore, if we assume the extra assumption for K_{1} to be a polytope and K_{2} to have $\mathcal{C}^{(2}$ boundary with strictly positive curvature, then a center z can be chosen in $K_{1} \backslash\left\{\right.$ vertices of $\left.K_{1}\right\}$ for which we have (i), (ii) and also (iii) $\frac{1}{n} \sum_{i=1}^{N} \lambda_{i} x_{i}=z$.

The special case of considering K_{1} and K_{2} centrally symmetric convex bodies was first observed by Milman (see [TJ], Theorem 14.5).

The aim of this paper is to extend this result to the non-convex case. We obtain a general result which is valid for K_{1} a compact, connected set in \mathbb{R}^{n} with $\operatorname{vol}\left(K_{1}\right)>0$, $K_{1} \subseteq K_{2}$, where K_{2} is a compact in \mathbb{R}^{n} such that int $\operatorname{conv}\left(K_{2}\right) \neq \emptyset$ and K_{1} is in maximal volume position inside $\operatorname{conv}\left(K_{2}\right)$ (no extra assumptions on the boundary of the bodies are used).

The method we develop to prove our result is different from that in [G-P-T]. We follow the ideas given in [Ba3], with suitable modifications and the main result we achieve is the following

Theorem 1.1. Let $K_{1} \subseteq \mathbb{R}^{n}$ be a connected, compact set with $\operatorname{vol}\left(K_{1}\right)>0$ and $K_{2} \subseteq \mathbb{R}^{n}$ be a compact set such that $K_{1} \subseteq K_{2}$. If K_{1} is in maximal volume position inside $\operatorname{conv}\left(K_{2}\right)$, for every $z \in \operatorname{int} \operatorname{conv}\left(K_{2}\right)$ there exist $N \in \mathbb{N}, N \leq n^{2}+n,\left(x_{i}, y_{i}\right)$ contact pairs for $\left(K_{1}-z, K_{2}-z\right)$ and $\lambda_{i}>0$ for all $i=1, \ldots, N$ such that:

$$
\begin{gathered}
\sum_{k=1}^{N} \lambda_{k} y_{k} \otimes x_{k}=\frac{1}{n} I_{n} \\
\sum_{k=1}^{N} \lambda_{k} y_{k}=0
\end{gathered}
$$

It is well known that if there exists a decomposition of the identity in the sense of theorem 1.1 we can not expect that K_{1} were the unique maximal volume position inside
K_{2} even for convex bodies, as it can be shown by considering simpleces or octahedra inscribed in the cube. Furthermore, an equivalence as it appears in John's Theorem is not true in general. We study this problem and as a consequence we obtain
Theorem 1.2. Let $K_{1} \subseteq \mathbb{R}^{n}$ be a connected, compact set with $\operatorname{vol}\left(K_{1}\right)>0$ and $K_{2} \subseteq \mathbb{R}^{n}$ be a compact set such that $K_{1} \subseteq K_{2}$. Let z be a fixed point in int conv $\left(K_{2}\right)$. Then the following asumptions are equivalents:
(i) $\operatorname{vol}\left(K_{1}\right)=\max \left\{\operatorname{vol}\left(a+S\left(K_{1}\right)\right) ; a \in \mathbb{R}^{n}, a+S\left(K_{1}\right) \subseteq \operatorname{conv}\left(K_{2}\right)\right\}$, where S runs over all symmetric positive definite matrices.
(ii) There exist $N \in \mathbb{N}, N \leq \frac{n^{2}+3 n}{2}$, $\left(x_{i}, y_{i}\right)$ contact pairs for $\left(K_{1}-z, K_{2}-z\right)$ and $\lambda_{i}>0$ for all $i=1, \ldots, N$ such that:

$$
\begin{gather*}
\sum_{k=1}^{N} \lambda_{k}\left(y_{k} \otimes x_{k}+x_{k} \otimes y_{k}\right)=\frac{1}{n} I_{n} \tag{1}\\
\sum_{k=1}^{N} \lambda_{k} y_{k}=0
\end{gather*}
$$

(iii) K_{1} is the unique position of K_{1} verifying (i).

In section 3 we extend the upper estimates of the volume ratio proved in [G-P-T] by defining the outer volume ratio of a compact K_{1} with respect to a convex body K_{2}, by considering an appropriate index. We follow the methods that appears in [G-P-T] by using Brascamp-Lieb and reverse Brascamp-Lieb inequalities as the main tools.

2. Proofs of Main Theorems

Throughout this section K_{1} will be a connected, compact set in \mathbb{R}^{n} with $\operatorname{vol}\left(K_{1}\right)>0$ and K_{2} will be a compact in \mathbb{R}^{n} such that $K_{1} \subseteq K_{2}$. Therorem 1.1 gives us a sufficient condition for the existence of some kind of John's decomposition of the identity and it follows the spirit of the work of K.M. Ball (see for instance [Ba2] or [Ba3]).

Proof of Theorem 1.1: First of all, notice that int conv $\left(K_{2}\right) \neq \emptyset$, since $K_{1} \subseteq$ conv $\left(K_{2}\right)$ and $\operatorname{vol}\left(K_{1}\right)>0$. Without loss of generality we can assume that $z=0$. Furthermore, since $K_{1} \subseteq K_{2}$ and $\operatorname{conv}\left(K_{2}\right)^{0}=K_{2}^{0}$ a contact pair for $\left(K_{1}, \operatorname{conv}\left(K_{2}\right)\right)$ is also a contact pair for $\left(K_{1}, K_{2}\right)$, so, we may suppose $\operatorname{conv}\left(K_{2}\right)=K_{2}$.

Let $\mathcal{A}=\left\{(y \otimes x, y) \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \times \mathbb{R}^{n} ;(x, y)\right.$ is a contact pair for $\left.\left(K_{1}, K_{2}\right)\right\}$. By using the maximality of the volume of K_{1}, the convexity of K_{2} and since $0 \in \operatorname{int} K_{2}$ it is easy to prove that \mathcal{A} is a non empty subset of $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \times \mathbb{R}^{n}$. We will show that $\left(\frac{1}{n} I_{n}, 0\right) \in \operatorname{conv}(\mathcal{A})$, where $\operatorname{conv}(\mathcal{A})$ is the convex hull of \mathcal{A} in $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \times \mathbb{R}^{n}$.

Suppose that $\left(\frac{1}{n} I_{n}, 0\right) \notin \operatorname{conv}(\mathcal{A})$. Then by using a separation theorem, there exist $H \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and $b \in \mathbb{R}^{n}$ such that:

$$
\left\langle\frac{1}{n} I_{n}, H\right\rangle_{\mathrm{tr}}+\langle 0, b\rangle>\langle y \otimes x, H\rangle_{\mathrm{tr}}+\langle b, y\rangle
$$

for all (x, y) contact pair and where $\langle\cdot, \cdot\rangle_{\text {tr }}$ denotes the trace duality on $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, i.e. $\langle T, S\rangle_{\mathrm{tr}}=\operatorname{tr} S T$.

Thus for every contact pair (x, y)

$$
\begin{equation*}
\frac{1}{n} \operatorname{tr} H>\langle H x, y\rangle+\langle b, y\rangle . \tag{2}
\end{equation*}
$$

There is no loss of generality to assume $\operatorname{tr} H=0$. Indeed, we can choose $\tilde{H}=H-$ $\frac{\operatorname{tr} H}{n} I_{n} \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, which is a linear operator with trace zero that verifies:

$$
\langle\tilde{H} x, y\rangle+\langle b, y\rangle=\langle H x, y\rangle-\frac{\operatorname{tr} H}{n}\langle x, y\rangle+\langle b, y\rangle<0=\frac{\operatorname{tr} \tilde{H}}{n}
$$

for all (x, y) contact pair. By using the linear map defined by the matrix H and $b \in \mathbb{R}^{n}$ we are going to construct a family of affine maps S_{δ} 's, with $0<\delta<\delta_{1}$, such that $\left|\operatorname{det} S_{\delta}\right| \geq 1$ and $S_{\delta}\left(K_{1}\right) \subseteq$ int K_{2}, which contradicts the maximality of the volume of K_{1}. We will divide the proof of that fact into 3 steps.

By continuity, there exists a positive number $\delta_{0}>0$ such that $I_{n}-\delta H$ is invertible for all $0<\delta<\delta_{0}$. For each $0<\delta<\delta_{0}$ we take $S_{\delta}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ defined by $S_{\delta}(z)=$ $\left(I_{n}-\delta H\right)^{-1}(z)+\delta\left(I_{n}-\delta H\right)^{-1}(b)$.

Step 1: There exists $0<\delta_{1} \leq \delta_{0}$ such that $S_{\delta}\left(K_{1}\right) \cap \partial K_{2}=\emptyset$, for all $0<\delta<\delta_{1}$.
Consider

$$
M=\left\{x \in \partial K_{2} ; \exists y \in K_{2}^{0} \text { such that }\langle x, y\rangle=1 \text { and }\langle H x, y\rangle+\langle b, y\rangle \geq 0\right\} .
$$

It is easy to check that M is a compact subset of ∂K_{2} and also $M \cap \partial K_{1}=\emptyset$. If there exists an $x \in M \cap \partial K_{1} \subseteq \partial K_{2} \cap \partial K_{1}$, there would exist $y \in K_{2}^{0}$ such that $\langle x, y\rangle=1$ (so (x, y) is a contact pair) and $\langle H x, y\rangle+\langle b, y\rangle \geq 0=\operatorname{tr} H$ which would contradict (2). Therefore $M \subseteq K_{1}^{c}$; by compactness of M and by continuity, there exists $0<\delta_{1}\left(\leq \delta_{0}\right)$ such that $\left(I_{n}-\delta H\right)(M)-\delta b \subseteq K_{1}^{c}$, for all $0<\delta<\delta_{1}$, and so $S_{\delta}\left(K_{1}\right) \cap M=\emptyset$.

Now let $x \in \partial K_{2}$. We will prove that $x \notin S_{\delta}\left(K_{1}\right)$. We only have to consider the case $x \notin M$. Then

$$
\langle H x, y\rangle+\langle b, y\rangle<0
$$

for all $y \in K_{2}^{0}$ such that $\langle x, y\rangle=1$. Since $0 \in \operatorname{int} K_{2}$ and K_{2} is a convex body there exists $y_{0} \in K_{2}^{0}$ such that $\left\langle x, y_{0}\right\rangle=1$, so we have that

$$
\left\langle x-\delta H x-\delta b, y_{0}\right\rangle=1-\delta\left(\left\langle H x, y_{0}\right\rangle+\left\langle b, y_{0}\right\rangle\right)>1
$$

for all $\delta>0$ and in particular for all $0<\delta<\delta_{1}$. Hence $x-\delta H x-\delta b \notin K_{1}$, or equivalently $x \notin S_{\delta}\left(K_{1}\right)$.

Step 2: For every $0<\delta<\delta_{1}$ there exists $\lambda_{\delta}>1$ such that $\lambda_{\delta} S_{\delta}\left(K_{1}\right) \subseteq \operatorname{int} K_{2}$.
Note that $S_{\delta}\left(K_{1}\right)$ is connected and $S_{\delta}\left(K_{1}\right) \cap \partial K_{2}=\emptyset$, therefore either $S_{\delta}\left(K_{1}\right) \subseteq$ int K_{2} or $S_{\delta}\left(K_{1}\right) \subseteq K_{2}^{c}$. Fix $x \in K_{1} \cap \operatorname{int} K_{2}$, it exists since $\operatorname{vol}\left(K_{1}\right) \neq 0$, and take

$$
C_{x}=\left\{S_{\delta}(x) ; 0 \leq \delta<\delta_{1}\right\} .
$$

It is easy to check that C_{x} is connected, $C_{x} \cap \partial K_{2}=\emptyset, C_{x} \cap$ int $K_{2} \neq \emptyset$ and $C_{x} \subseteq$ int K_{2}. Therefore $S_{\delta}\left(K_{1}\right) \cap \operatorname{int} K_{2} \neq \emptyset$ and by connectedness of K_{1} we conclude that
$S_{\delta}\left(K_{1}\right) \subseteq \operatorname{int} K_{2}$, for all $0<\delta<\delta_{1}$. Now, by a compactness argument and the fact that $S_{\delta}\left(K_{1}\right) \subseteq \operatorname{int} K_{2}$ we conclude that for every $0<\delta<\delta_{1}$ there exists $\lambda_{\delta}>1$ such that $\lambda_{\delta} S_{\delta}\left(K_{1}\right) \subseteq \operatorname{int} K_{2}$.

Step 3: $\operatorname{vol}\left(\lambda_{\delta} S_{\delta}\left(K_{1}\right)\right)>\operatorname{vol}\left(K_{1}\right)$, for all $0<\delta<\delta_{1}$.
Indeed,

$$
\operatorname{vol}\left(\lambda_{\delta} S_{\delta}\left(K_{1}\right)\right)=\frac{\lambda_{\delta}^{n} \operatorname{vol}\left(K_{1}\right)}{\left|\operatorname{det}\left(I_{n}-\delta H\right)\right|}
$$

Now, by using the inequality between arithmetic mean and geometric mean (denoted briefly AM-GM inequality) we obtain that $\left|\operatorname{det}\left(I_{n}-\delta H\right)\right|^{\frac{1}{n}} \leq \frac{1}{n} \operatorname{tr}\left(I_{n}-\delta H\right)=1$, and so

$$
\operatorname{vol}\left(\lambda_{\delta} S_{\delta}\left(K_{1}\right)\right) \geq \lambda_{\delta}^{n} \operatorname{vol}\left(K_{1}\right)>\operatorname{vol}\left(K_{1}\right)
$$

Therefore, if $\left(\frac{1}{n} I_{n}, 0\right) \notin \operatorname{conv} \mathcal{A}$, then K_{1} is not in maximal volume position inside K_{2}.
Note that the fact that $N \leq n^{2}+n$ is deduced from the classical Caratheodory's theorem since $\left\{\left(y \otimes x-\frac{1}{n} I_{n}, y\right) ;(x, y)\right.$ is a contact pair $\}$ is contained in a $\left(n^{2}+n-1\right)$ dimensional vector space.

Remarks.

1) For every $K \subseteq \mathbb{R}^{n}$ with $\operatorname{vol}(K)>0$ it is easy to check that K is in maximal volume position inside conv (K).
2) We note that $K_{1} \subseteq K_{2}$ and K_{1} is in maximal volume position inside conv $\left(K_{2}\right)$ implies that K_{1} is in maximal volume position inside K_{2}. The converse is not true, as the following example shows. Consider

$$
\begin{aligned}
& K_{1}=\left\{x \in \mathbb{R}^{n} ;\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| \leq 1\right\} \\
& K_{2}=K_{1} \cup 2 \partial K_{1}
\end{aligned}
$$

It is trivial to see that K_{1} is in maximal volume position inside K_{2}, K_{1} is not in maximal volume position inside $\operatorname{conv}\left(K_{2}\right)$ and there is no decomposition of the identity as before, since there are no contact pairs for $\left(K_{1}, K_{2}\right)$.
Corolary 2.1. Let $K_{1} \subseteq K_{2} \subseteq \mathbb{R}^{n}$ be as in the theorem 1.1. If $\operatorname{conv}\left(K_{1}\right)$ is a polytope, conv $\left(K_{2}\right)$ has $\mathcal{C}^{(2)}$ boundary with strictly positive curvature and K_{1} is maximal volume position inside conv $\left(K_{2}\right)$, then there exist $z \in \operatorname{conv}\left(K_{1}\right), N \in \mathbb{N}, N \leq n^{2}+n,\left(x_{k}, y_{k}\right)$ contact pairs of $\left(K_{1}-z, K_{2}-z\right)$ and $\lambda_{k}>0$ for all $k=1, \ldots, N$ such that

$$
\begin{gathered}
\sum_{k=1}^{N} \lambda_{k} y_{k} \otimes x_{k}=\frac{1}{n} I_{n} \\
\sum_{k=1}^{N} \lambda_{k} y_{k}=\sum_{k=1}^{N} \lambda_{k} x_{k}=0 .
\end{gathered}
$$

Proof: It is easy to prove that the fact that K_{1} is in maximal volume position inside conv $\left(K_{2}\right)$ implies that conv $\left(K_{1}\right)$ is in maximal volume position inside conv $\left(K_{2}\right)$ and $\partial K_{1} \cap \partial\left(\operatorname{conv}\left(K_{2}\right)\right)=\partial\left(\operatorname{conv}\left(K_{1}\right)\right) \cap \partial\left(\operatorname{conv}\left(K_{2}\right)\right)$. Therefore we can assume that
K_{1} is a polytope and K_{2} is a convex which has a $\mathcal{C}^{(2)}$ boundary with strictly positive curvature. But notice that this case was studied by A. Giannopoulos, I. Perissinaki and A. Tsolomitis (see [G-P-T]) concluding the result needed.

Now we can ask if the existence of some kind of decomposition of the identity in \mathbb{R}^{n} would imply that K_{1} were the unique maximal volume position inside K_{2}, as it happens in the classical John's Theorem. It is well known that we can't expect such a thing, simply by considering simplices or octahedra inscribed in the cube. Theorem 1.2 shows, loosely speaking, that not only the existence of a "modified" John's decomposition of the identity for a pair (K_{1}, K_{2}) implies that K_{1} is the unique "pseudo" maximal volume position inside K_{2}, but also that this "pseudo" maximality implies the existence of a "modified" decomposition of the identity too.

Proof of Theorem 1.2: As before, we can show that int conv $\left(K_{2}\right) \neq \emptyset$. We can also assume $z=0$ and K_{2} convex.
$(i) \Rightarrow(i i)$ Let $\mathcal{B}=\left\{\left(\frac{1}{2}(y \otimes x+x \otimes y), y\right) \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \times \mathbb{R}^{n} ;(x, y)\right.$ is a contact pair $\}$. By using the maximality of the volume of K_{1}, the convexity of K_{2} and since $0 \in \operatorname{int} K_{2}$ it is easy to prove that \mathcal{B} is a non empty subset of $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \times \mathbb{R}^{n}$. As in the proof of theorem 1.1, we will show that $\left(\frac{1}{n} I_{n}, 0\right) \in \operatorname{conv}(\mathcal{B})$.

Suppose, on the contrary, that $\left(\frac{1}{n} I_{n}, 0\right) \notin \operatorname{conv}(\mathcal{B})$. Then by using a separation theorem, there exist $H \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and $\theta \in \mathbb{R}^{n}$ such that:

$$
\left\langle\frac{1}{n} I_{n}, H\right\rangle_{\mathrm{tr}}+\langle 0, \theta\rangle>\frac{1}{2}\left(\langle y \otimes x, H\rangle_{\mathrm{tr}}+\langle x \otimes y, H\rangle_{\mathrm{tr}}\right)+\langle\theta, y\rangle
$$

for all (x, y) contact pair. Therefore

$$
\frac{1}{n} \operatorname{tr} H>\frac{1}{2}(\langle H x, y\rangle+\langle x, H y\rangle)+\langle\theta, y\rangle
$$

There is no loss of generality to assume that:

1) H is a symmetric matrix because in other case we could take $\tilde{H}=\frac{1}{2}\left(H+H^{\star}\right)$ which is a symmetric matrix that verifies that $\langle\tilde{H} x, y\rangle+\langle x, \tilde{H} y\rangle=\langle H x, y\rangle+\langle x, H y\rangle$ and therefore for every contact pair (x, y)

$$
\frac{1}{n} \operatorname{tr} H>\langle H x, y\rangle+\langle\theta, y\rangle .
$$

2) $\operatorname{tr} H=0$ since in other case we can choose $\tilde{H}=H-\frac{\operatorname{tr} H}{n} I_{n} \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ which is a linear operator with trace zero that verifies:

$$
\langle\tilde{H} x, y\rangle+\langle\theta, y\rangle=\langle H x, y\rangle-\frac{\operatorname{tr} H}{n}\langle x, y\rangle+\langle\theta, y\rangle<0=\frac{\operatorname{tr} \tilde{H}}{n}
$$

for all (x, y) contact pair.
Therefore there exist a symmetric matrix $H \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ with $\operatorname{tr} H=0$ and $\theta \in \mathbb{R}^{n}$ such that:

$$
0>\langle H x, y\rangle+\langle\theta, y\rangle
$$

for all (x, y) contact pair. By using the linear map defined by the matrix H and $\theta \in \mathbb{R}^{n}$ we are going to construct a family of affine maps $T_{\delta}(\cdot)=S_{\delta}(\cdot)+b_{\delta}$, with S_{δ} symmetric positive definite matrix for all $0<\delta<\delta_{1}$, such that $\left|\operatorname{det} S_{\delta}\right| \geq 1$ and $T_{\delta}\left(K_{1}\right) \subseteq \operatorname{int} K_{2}$, which contradicts the maximality of K_{1}.

By continuity, there exists a positive number $\delta_{0}>0$ such that $I_{n}-\delta H$ is invertible and symmetric positive definite for all $0<\delta<\delta_{0}$. For each $0<\delta<\delta_{0}$ we take $T_{\delta}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ defined by $T_{\delta}(z)=\left(I_{n}-\delta H\right)^{-1}(z)+\delta\left(I_{n}-\delta H\right)^{-1}(\theta)$. By the same methods as in the proof of Theorem 1.1, we can show that:

1) There exists $0<\delta_{1} \leq \delta_{0}$ such that $T_{\delta}\left(K_{1}\right) \cap \partial K_{2}=\emptyset$, for all $0<\delta<\delta_{1}$.
2) For every $0<\delta<\delta_{1}$ there exists $\lambda_{\delta}>1$ such that $\lambda_{\delta} T_{\delta}\left(K_{1}\right) \subseteq$ int K_{2}.
3) $\operatorname{vol}\left(\lambda_{\delta} T_{\delta}\left(K_{1}\right)\right)>\operatorname{vol}\left(K_{1}\right)$, for all $0<\delta<\delta_{1}$
which contradicts the maximality of K_{1}.
(ii) $\Rightarrow($ iii $)$ Let $T(\cdot)=S(\cdot)+a$ be such that $T\left(K_{1}\right) \subseteq K_{2}, a \in \mathbb{R}^{n}$ and S is a symmetric positive definite matrix. It is well known that we can find an orthogonal matrix $U \in O(n)$ and a diagonal matrix D with diagonal elements $\alpha_{1}, \ldots, \alpha_{n}>0$ such that $S=U^{\star} D U$ and therefore

$$
\begin{equation*}
\operatorname{vol}\left(T\left(K_{1}\right)\right)=\left|\operatorname{det}\left(U^{\star} D U\right)\right| \operatorname{vol}\left(K_{1}\right)=\left(\prod_{k=1}^{n} \alpha_{k}\right) \operatorname{vol}\left(K_{1}\right) . \tag{3}
\end{equation*}
$$

Hence we have to estimate $\prod \alpha_{k}$. On the one hand, we obtain that

$$
\left\langle U^{\star} D U x, y\right\rangle=\sum_{j=1}^{n} \alpha_{j}\left\langle U^{\star} e_{j}, x\right\rangle\left\langle U^{\star} e_{j}, y\right\rangle
$$

for all $x, y \in \mathbb{R}^{n}$, by straightforward computation.
On the other hand, if (x, y) is a contact pair then $\langle T x, y\rangle \leq 1$ and therefore

$$
\begin{aligned}
1 & =\sum_{k=1}^{N} \lambda_{k} \geq \sum_{k=1}^{N} \lambda_{k}\left\langle T x_{k}, y_{k}\right\rangle=\sum_{k=1}^{N} \lambda_{k}\left\langle U^{\star} D U x_{k}, y_{k}\right\rangle \\
& =\sum_{k=1}^{N} \lambda_{k} \sum_{j=1}^{n} \alpha_{j}\left\langle U^{\star} e_{j}, x_{k}\right\rangle\left\langle U^{\star} e_{j}, y_{k}\right\rangle=\sum_{j=1}^{n}\left(\alpha_{j} \sum_{k=1}^{N} \lambda_{k}\left\langle U^{\star} e_{j}, x_{k}\right\rangle\left\langle U^{\star} e_{j}, y_{k}\right\rangle\right) \\
& =\frac{1}{n} \sum_{j=1}^{n} \alpha_{j}\left\langle U^{\star} e_{j}, U^{\star} e_{j}\right\rangle=\frac{1}{n} \sum_{j=1}^{n} \alpha_{j} .
\end{aligned}
$$

Now by using the AM-GM inequality, we conclude that $1 \geq \frac{1}{n} \sum \alpha_{j} \geq\left(\prod \alpha_{j}\right)^{\frac{1}{n}}$, which implies that in (3) we obtain $\operatorname{vol}\left(T\left(K_{1}\right)\right) \leq \operatorname{vol}\left(K_{1}\right)$.

In addition to this, note that if T is such that $\operatorname{vol}\left(T\left(K_{1}\right)\right)=\operatorname{vol}\left(K_{1}\right)$, then, by the equality case in the AM-GM inequality we would have that $\alpha_{1}=\ldots=\alpha_{n}=1$, so $T=I_{n}+a$. Therefore we would obtain that

$$
1 \geq\langle T x, y\rangle=\langle x+a, y\rangle=1+\langle a, y\rangle
$$

for all (x, y) contact pair and, in particular, $\left\langle a, y_{k}\right\rangle \leq 0$ for all $\left(x_{k}, y_{k}\right)$ contact pair that appears in the decomposition of the identity. But we also would have that:

$$
\sum_{k=1}^{N} \lambda_{k}\left\langle a, y_{k}\right\rangle=\sum_{k=1}^{N}\left\langle a, \lambda_{k} y_{k}\right\rangle=0
$$

which would imply that, $\left\langle a, y_{k}\right\rangle=0$ for all $\left(x_{k}, y_{k}\right)$ and then we would conclude that

$$
\frac{1}{n}\langle a, a\rangle=\sum_{k=1}^{N} \lambda_{k}\left\langle a, y_{k}\right\rangle\left\langle a, x_{k}\right\rangle=0 .
$$

Hence $T=I_{n}$.

Corolary 2.2. Let $K_{1} \subseteq K_{2}$ be as in theorem 1.1. Fix $z \in \operatorname{int} \operatorname{conv}\left(K_{2}\right)$. Then the following assumptions are equivalents:
(i) $\operatorname{vol}\left(K_{1}\right)=\max \left\{\operatorname{vol}\left(a+S\left(K_{1}\right)\right) ; a \in \mathbb{R}^{n}, a+S\left(K_{1}\right) \subseteq \operatorname{conv}\left(K_{2}\right)\right\}$, where S runs over all symmetric positive definite matrices.
(ii) For every $S \in G L(n)$ symmetric matrix and every $\theta \in \mathbb{R}^{n}$ there exists a contact pair (x, y) for $\left(K_{1}-z, K_{2}-z\right)$ such that

$$
\frac{\operatorname{tr} S}{n} \leq\langle S x, y\rangle+\langle\theta, y\rangle
$$

Proof: As before, we can show that int conv $\left(K_{2}\right) \neq \emptyset$. We can also assume $z=0$ and K_{2} convex.
$(i) \Rightarrow(i i)$ By Theorem 1.2 there exist $\left(x_{i}, y_{i}\right)$ contact pairs for $\left(K_{1}-z, K_{2}-z\right)$ and $\lambda_{i}>0$ for all $i=1, \ldots, N$ such that:

$$
\sum_{k=1}^{N} \lambda_{k}\left(y_{k} \otimes x_{k}+x_{k} \otimes y_{k}\right)=\frac{1}{n} I_{n} \quad \text { and } \quad \sum_{k=1}^{N} \lambda_{k} y_{k}=0
$$

Suppose that there would exist $S \in G L(n)$ symmetric matrix and $\theta \in \mathbb{R}^{n}$ such that for every (x, y) contact pair

$$
\frac{\operatorname{tr} S}{n}>\langle S x, y\rangle+\langle\theta, y\rangle
$$

Therefore

$$
\begin{aligned}
\frac{\operatorname{tr} S}{n} & =\frac{\operatorname{tr} S}{n}+\left\langle\theta, \sum_{i=1}^{N} \lambda_{i} y_{i}\right\rangle=\left\langle(S, \theta),\left(\frac{1}{n} I_{n}, \sum_{i=1}^{N} \lambda_{k} y_{k}\right)\right\rangle= \\
& =\sum_{i=1}^{N} \lambda_{i}\left\langle(S, \theta),\left(\frac{1}{2}\left(y_{i} \otimes x_{i}+x_{i} \otimes y_{i}\right), y_{i}\right)\right\rangle=\sum_{i=1}^{N} \lambda_{i}\left(\left\langle S x_{i}, y_{i}\right\rangle+\left\langle\theta, y_{k}\right\rangle\right)< \\
& <\sum_{i=1}^{N} \lambda_{i} \frac{\operatorname{tr} S}{n}=\frac{\operatorname{tr} S}{n}
\end{aligned}
$$

which leads us to a contradiction.
$(i i) \Rightarrow(i)$ By using the hypothesis, for every $H \in G L(n), \theta \in \mathbb{R}^{n}$, there exists a contact pair such that

$$
\frac{1}{n} \operatorname{tr} H>\frac{1}{2}(\langle H x, y\rangle+\langle x, H y\rangle)+\langle\theta, y\rangle
$$

which make that $\left(\frac{1}{n}, 0\right) \in \operatorname{conv}\left(\left\{\left(\frac{1}{2}(y \otimes x+x \otimes y), y\right) \in \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \times \mathbb{R}^{n} ;\right.\right.$ where (x, y) is a contact pair \})

Remarks.

1) If K_{1} is in maximal volume position inside conv $\left(K_{2}\right)$, then K_{1} is unique if we only consider affine transformations given by symmetric, positive definite matrices. Indeed, this is due to the fact that $\frac{1}{n} I=\sum_{k=1}^{N} \lambda_{k} y_{k} \otimes x_{k}$ implies that $\frac{1}{n} I=\sum_{k=1}^{N} \lambda_{k} x_{k} \otimes y_{k}$.
2) If we suppose either $K_{1}=B_{2}^{n}$ or $\operatorname{conv}\left(K_{2}\right)=B_{2}^{n}$ in the last theorem, we obtain a stronger conclusion, since the existence of contact pairs $\left(x_{k}, y_{k}\right)$ and $\lambda_{k}>0$ such that

$$
\sum_{k=1}^{N} \frac{\lambda_{k}}{2}\left(y_{k} \otimes x_{k}+x_{k} \otimes y_{k}\right)=\frac{1}{n} I_{n} \text { and } \quad \sum_{k=1}^{N} \lambda_{k} y_{k}=0
$$

is equivalent to the fact that $\operatorname{vol}\left(K_{1}\right)=\max \left\{\operatorname{vol}\left(a+T\left(K_{1}\right)\right)\right.$ such that $a+T\left(K_{1}\right) \subseteq$ $\operatorname{conv}\left(K_{2}\right), a \in \mathbb{R}^{n}$ and $\left.T \in G L(n)\right\}$ and this maximum is only attained at K_{1}, up to orthogonal transformation (i.e. if $\operatorname{vol}\left(T\left(K_{1}\right)\right)=\operatorname{vol}\left(K_{1}\right)$, then T is an orthogonal transformation). This is the classical John's result. Let's see it briefly.

Suppose that there exists a decomposition of the identity (in the sense of (1)). If we take $\operatorname{conv}\left(K_{2}\right)=B_{2}^{n}$ and T is an affine transformation such that $T\left(K_{1}\right) \subseteq B_{2}^{n}$, then there exist orthogonal matrices U, V, a diagonal matrix D with diagonal elements $\alpha_{1}, \ldots, \alpha_{n}>0$ and $a \in \mathbb{R}^{n}$ such that $T(\cdot)=V D U(\cdot)+a$. Now if we choose $\tilde{T}(\cdot)=$ $U^{\star} D U(\cdot)+(V U)^{\star}(a)$ then it is easy to check that this map verifies:
(a) $U^{\star} D U$ is a symmetric positive definite matrix.
(b) $\tilde{T}\left(K_{1}\right) \subseteq(V U)^{\star}\left(B_{2}^{n}\right)=B_{2}^{n}\left(\right.$ since $\left.\tilde{T}(\cdot)=(V U)^{\star} T(\cdot)\right)$.
(c) $\operatorname{vol}\left(\tilde{T}\left(K_{1}\right)\right)=\operatorname{vol}\left(T\left(K_{1}\right)\right)$.

Therefore by using $(i i) \Rightarrow(i i i)$ in theorem 1.2 and since \tilde{T} satisfies (a) and (b) we conclude that

$$
\operatorname{vol}\left(T\left(K_{1}\right)\right)=\operatorname{vol}\left(\tilde{T}\left(K_{1}\right)\right) \leq \operatorname{vol}\left(K_{1}\right)
$$

and the equality is only attained if $\tilde{T}=I_{n}$, and so T is an orthogonal transformation.
Note that a similar reasoning can be applied to the case $K_{1}=B_{2}^{n}$.

3. Some estimates for the outer volume ratio of compact sets

We can extend the notion of volume ratio to a pair $\left(K_{1}, K_{2}\right) \subseteq \mathbb{R}^{n} \times \mathbb{R}^{n}$, where K_{2} is a convex body and K_{1} is a compact set with $\operatorname{vol}\left(K_{1}\right)>0$, simply by

Definition 3.1. Let $K_{1} \subseteq \mathbb{R}^{n}$ be compact set with $\operatorname{vol}\left(K_{1}\right)>0$ and $K_{2} \subseteq \mathbb{R}^{n}$ be a convex body. We define outer volume ratio as

$$
v r\left(K_{2} ; K_{1}\right)=\inf \left\{\frac{\operatorname{vol}\left(K_{2}\right)^{\frac{1}{n}}}{\operatorname{vol}\left(T\left(K_{1}\right)\right)^{\frac{1}{n}}} ; T \text { affine transformation with } T\left(K_{1}\right) \subseteq K_{2}\right\}
$$

It is quite easy to show that we cannot expect any upper estimate without asuming extra asumptions. We are going to introduce an index for compact sets with positive volume in order to get general bounds, depending only on the dimension and on the index, for the outer volume ratio with respect to a convex body.

We recall that a set $K \subseteq \mathbb{R}^{n}$ is p-convex, $(0<p \leq 1)$ if $\lambda x+\mu y \in K$, for every $x, y \in K$ and for every $\lambda, \mu \geq 0$ such that $\lambda^{p}+\mu^{p}=1$. The p-convex hull of a set K, which we denote by $p-\operatorname{conv}(K)$, is defined as the intersection of all p-convex sets that contain K. It is easy to see that $0 \in \overline{p-\operatorname{conv}(K)}$.

Definition 3.2. Let $K \subseteq \mathbb{R}^{n}$ a compact set. We define $p(K)$ as
$p(K)= \begin{cases}\sup \left\{p \in(0,1] ; \exists a \in \mathbb{R}^{n} \text { with } p-\operatorname{conv}\{(\operatorname{ext} K)-a\} \subseteq K-a\right\} & \text { if it exists } \\ 0 & \text { otherwise }\end{cases}$ where $\operatorname{ext} K$ denotes the set of extreme points of K.

Remarks:

1) If $p \in(0,1]$ verifies that there exist an $a \in \mathbb{R}^{n}$ such that $p-\operatorname{conv}\{(\operatorname{ext} K)-a\} \subseteq K-a$ then $a \in K$, since 0 is inside the clausure of $p-\operatorname{conv}\{(\operatorname{ext} K)-a\}$, which is embedded in $K-a$ and so $a \in K$.
2) $p(K)$ is an affine invariant of K, i.e. if $T=a+S$ is an affine transformation on \mathbb{R}^{n} with $a \in \mathbb{R}^{n}$ and $S \in G L(n)$ then $p(T(K))=p(K)$.
3) The supremum in the last definition can be replaced by maximum, simply by using compactness and continuity arguments.
4)If K is a p-convex body with $0<p \leq 1$ then $p(K) \geq p$, but if $0<p<1$ then there are compact sets K with $p(K) \geq p$ which are not p-convex. Notice that $p(K)=1$ if and only if K is convex, simply by using Krein-Milman's theorem.

Now we are going to state and prove some upper estimates for the volume ratio of a pair $\left(K_{1}, K_{2}\right)$ where K_{1} is a compact set with $\operatorname{vol}\left(K_{1}\right)>0$ and $p\left(K_{1}\right)>0$, and K_{2} is a convex body. We can assume that K_{1} is in maximal volume position inside K_{2}, since in other case, there would exist an affine transformation T such that $T\left(K_{1}\right)$ would be in maximal volume position inside K_{2} and therefore K_{1} would work with the pair $\left(T\left(K_{1}\right), K_{2}\right)$. Hence if $p\left(K_{1}\right)=p$,

$$
\operatorname{vr}\left(K_{2} ; K_{1}\right)=\frac{\operatorname{vol}\left(K_{2}\right)^{\frac{1}{n}}}{\operatorname{vol}\left(K_{1}\right)^{\frac{1}{n}}} \leq \frac{\operatorname{vol}\left(K_{2}\right)^{\frac{1}{n}}}{\operatorname{vol}\left(p-\operatorname{conv}\left\{\left(\operatorname{ext} K_{1}\right)-a\right\}\right)^{\frac{1}{n}}}
$$

for some $a \in K_{1}$. Therefore

$$
\operatorname{vr}\left(K_{2} ; K_{1}\right) \leq \frac{\operatorname{vol}\left(K_{2}-a\right)^{\frac{1}{n}}}{\operatorname{vol}\left(\operatorname{conv}\left\{\left(\operatorname{ext} K_{1}\right)-a\right\}\right)^{\frac{1}{n}}} \frac{\operatorname{vol}\left(\operatorname{conv}\left\{\left(\operatorname{ext} K_{1}\right)-a\right\}\right)^{\frac{1}{n}}}{\operatorname{vol}\left(p-\operatorname{conv}\left\{\left(\operatorname{ext} K_{1}\right)-a\right\}\right)^{\frac{1}{n}}}
$$

It can be shown that conv $\left\{\left(\operatorname{ext} K_{1}\right)-a\right\}=\operatorname{conv}\left(K_{1}-a\right)$ and since $\operatorname{conv}\left(K_{1}-a\right)$ is in maximal volume position inside $K_{2}-a$ we get

$$
v r\left(K_{2} ; K_{1}\right) \leq v r\left(K_{2} ; \operatorname{conv}\left(K_{1}\right)\right) \frac{\operatorname{vol}\left(\operatorname{conv}\left\{\left(\operatorname{ext} K_{1}\right)-a\right\}\right)^{\frac{1}{n}}}{\operatorname{vol}\left(p-\operatorname{conv}\left\{\left(\operatorname{ext} K_{1}\right)-a\right\}\right)^{\frac{1}{n}}}
$$

It is easy to check that $\operatorname{conv}\left\{\left(\operatorname{ext} K_{1}\right)-a\right\} \subseteq n^{\frac{1}{p}-1}(p-\operatorname{conv}\{(\operatorname{ext} K)-a\})$. Indeed, since $a \in K_{1}$ then

$$
\operatorname{conv}\left\{\left(\operatorname{ext} K_{1}\right)-a\right\}=\operatorname{conv}\left(K_{1}-a\right)=\operatorname{conv}\left\{\cup_{x \in K_{1}}[0, x-a]\right\}
$$

and we can use a stronger version of Caratheodory's theorem appearing in [E] that asserts that for every $x \in \operatorname{conv}\left\{\left(\operatorname{ext} K_{1}\right)-a\right\}$ there exist $x_{i} \in(\operatorname{ext} K)-a$ and $\alpha_{i} \geq 0$, $i=1, \ldots, n$ such that $x=\sum_{i=1}^{n} \alpha_{i} x_{i}$ and $\sum_{i=1}^{n} \alpha_{i}=1$. Therefore

$$
\left(\sum_{i=1}^{n} \alpha_{i}^{p}\right)^{\frac{1}{p}} \leq n^{\frac{1}{p}-1} \sum_{i=1}^{n} \alpha_{i}
$$

which implies that $x \in n^{\frac{1}{p}-1} p-\operatorname{conv}\left\{\left(\operatorname{ext} K_{1}\right)-a\right\}$. On the other hand a result of Giannopoulos, Perissinaki and Tsolomitis (see [G-P-T]) shows that $\operatorname{vr}\left(K_{2} ; \operatorname{conv}\left\{\left(\operatorname{ext} K_{1}\right)-\right.\right.$ $a\}) \leq n$ and thus we sumarize all these things in the following result

Proposition 3.3. Let $K_{1}, K_{2} \subseteq \mathbb{R}^{n}$ be such that K_{1} is a compact set with $\operatorname{vol}\left(K_{1}\right)>0$, $p\left(K_{1}\right)=p>0$ and K_{2} a convex body. Then

$$
\operatorname{vr}\left(K_{2} ; K_{1}\right) \leq n^{\frac{1}{p}} .
$$

Next we are going to prove that if K_{1} or K_{2} has some kind of symmetry properties then this general estimate can be slightly improved by using decompositions of the identity in the sense of theorem 1.1, following the spirit of K.M. Ball (see [Ba1]) and A. Giannopoulos, I. Perisinaki, A. Tsolomitis ([G-P-T]). We start with a result which can be found in [G-P-T] and whose proof involves Cauchy-Binet formula.
Lemma 3.4. Let $\lambda_{1}, \ldots, \lambda_{N}>0$. Let x_{1}, \ldots, x_{N} and y_{1}, \ldots, y_{N} be vectors in \mathbb{R}^{n} satisfying $\left\langle x_{k}, y_{k}\right\rangle=1$, for all $k=1, \ldots, N$ and $\sum_{k=1}^{N} \lambda_{k} y_{k} \otimes x_{k}=I_{n}$. Then $D_{x} D_{y} \geq 1$, where D_{x} and D_{y} are defined by

$$
\begin{equation*}
D_{x}=\inf \left\{\frac{\operatorname{det}\left(\sum_{k=1}^{N} \lambda_{k} \alpha_{k} x_{k} \otimes x_{k}\right)}{\prod_{k=1}^{N} \alpha_{k}^{\lambda_{k}}} ; \alpha_{k}>0, k=1, \ldots, N\right\} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
D_{y}=\inf \left\{\frac{\operatorname{det}\left(\sum_{k=1}^{N} \lambda_{k} \alpha_{k} y_{k} \otimes y_{k}\right)}{\prod_{k=1}^{N} \alpha_{k}^{\lambda_{k}}} ; \alpha_{k}>0, k=1, \ldots, N\right\} \tag{5}
\end{equation*}
$$

Proposition 3.5. Let $K_{1}, K_{2} \subseteq \mathbb{R}^{n}$ be such that K_{1} is a symmetric compact set with $\operatorname{vol}\left(K_{1}\right)>0, p\left(K_{1}\right)=p>0$ and K_{2} is a symmetric convex body. Then

$$
\operatorname{vr}\left(K_{2} ; K_{1}\right) \leq n!^{\frac{1}{n}} n^{\frac{1}{p}-1} .
$$

Proof: First of all it is easy to check that we can assume that K_{1} and K_{2} are centrally symmetric and so it is ext K_{1}. By using the same arguments than before we conclude that

$$
v r\left(K_{2} ; K_{1}\right) \leq v r\left(K_{2} ; \operatorname{conv}\left(K_{1}\right)\right) n^{1 / p-1} .
$$

Next we are going to give an upper estimate for $\operatorname{vr}\left(K_{2} ; L\right)$, where K_{2} and $L=\operatorname{conv}\left(K_{1}\right)$ are centrally symmetric convex bodies and L is in maximal volume position inside K_{2}.

By using theorem 1.1, we can find contact pairs $\left(x_{i}, y_{i}\right)$ and $\lambda_{i}>0$, for all $i=$ $1, \ldots, N, N \leq n^{2}+n$, such that

$$
\sum_{k=1}^{N} \lambda_{k} y_{k} \otimes x_{k}=I_{n} \quad \text { and } \quad \sum_{k=1}^{N} \lambda_{k} y_{k}=0
$$

If we take $X=\operatorname{conv}\left\{ \pm x_{1}, \ldots, \pm x_{N}\right\} \subseteq L$ and $Y=\left\{y \in \mathbb{R}^{n} ;\left|\left\langle y, y_{k}\right\rangle\right| \leq 1 k=1, \ldots, N\right\}$ $K_{2} \subseteq Y$, we obtain that

$$
\operatorname{vr}\left(K_{2} ; L\right)=\frac{\operatorname{vol}\left(K_{2}\right)^{\frac{1}{n}}}{\operatorname{vol}(L)^{\frac{1}{n}}} \leq \frac{\operatorname{vol}(Y)^{\frac{1}{n}}}{\operatorname{vol}(X)^{\frac{1}{n}}}
$$

Therefore if we find some upper estimate for $\operatorname{vol}(Y)$ and lower estimate for $\operatorname{vol}(X)$ we will obtain some upper estimates for $\operatorname{vr}\left(K_{2} ; K_{1}\right)$.

Claim 1: $\operatorname{vol}(Y) \leq \frac{2^{n}}{\sqrt{D_{y}}}$
Consider $g_{j}: \mathbb{R} \longrightarrow \mathbb{R}, j=1, \ldots, N$, defined by $g_{j}(t)=\chi_{[-1,1]}(t)$. By using the Brascamp-Liev inequality (see [Bar]) we obtain that

$$
\int_{\mathbb{R}^{n}} \prod_{k=1}^{N}\left(g_{k}\left(\left\langle x, y_{k}\right\rangle\right)\right)^{\lambda_{k}} d x \leq \frac{1}{\sqrt{D_{y}}} \prod_{k=1}^{N}\left(\int_{\mathbb{R}} g_{k}(t) d t\right)^{\lambda_{k}}=\frac{1}{\sqrt{D_{y}}}\left(\int_{-1}^{1} d t\right)^{\sum \lambda_{k}}
$$

where D_{y} was defined in (5). On the other hand, we conclude that

$$
\int_{\mathbb{R}^{n}} \prod_{k=1}^{N}\left(g_{k}\left(\left\langle x, y_{k}\right\rangle\right)\right)^{\lambda_{k}} d x=\int_{\mathbb{R}^{n}} \chi_{Y}(x) d x=\operatorname{vol}(Y)
$$

Therefore $\operatorname{vol}(Y) \leq \frac{2^{n}}{\sqrt{D_{y}}}$

Claim 2: $\operatorname{vol}(X) \geq 2^{n} \frac{\sqrt{D_{x}}}{n!}$
We define for every $x \in \mathbb{R}^{n}$

$$
N(x)=\inf \left\{\sum_{k=1}^{N}\left|\alpha_{k}\right| ; \quad x=\sum_{k=1}^{N} \alpha_{k} x_{k}\right\}
$$

which is an integrable function that verifies

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} e^{-N(x)} d x & =\int_{\mathbb{R}^{n}} \sup \left\{\prod_{k=1}^{N} e^{-\alpha_{k}^{p}} ; \alpha_{k} \geq 0, x=\sum_{k=1}^{N} \alpha_{k} x_{k}\right\} d x \\
& =\int_{\mathbb{R}^{n}} \sup \left\{\prod_{k=1}^{N} f_{k}\left(\theta_{k}\right)^{\lambda_{k}} ; x=\sum_{k=1}^{N} \lambda_{k} \theta_{k} x_{k}\right\} d x
\end{aligned}
$$

where $f_{k}: \mathbb{R} \longrightarrow \mathbb{R}$ is defined by $f_{k}(t)=e^{-|t|}$. Now, if we use the reverse of the Brascamp-Liev inequality (see [Bar]) we can assert that

$$
\begin{align*}
\int_{\mathbb{R}^{n}} \sup \left\{\prod_{k=1}^{N} f_{k}\left(\theta_{k}\right)^{\lambda_{k}} ; x=\sum_{k=1}^{N} \lambda_{k} \theta_{k} x_{k}\right\} d x & \geq \sqrt{D_{x}} \prod_{k=1}^{N}\left(\int_{\mathbb{R}} f_{k}(t) d t\right)^{\lambda_{k}} \\
& =\sqrt{D_{x}} \prod_{k=1}^{N} 2^{\lambda_{k}} \tag{6}\\
& =\sqrt{D_{x}} 2^{n}
\end{align*}
$$

where D_{x} was defined in (4).
On the other hand, we can compute directly the integral of $e^{-N(x)}$ by

$$
\int_{\mathbb{R}^{n}} e^{-N(x)} d x=\int_{\mathbb{R}^{n}} \int_{N(x)}^{+\infty} e^{-t} d t d x=\int_{0}^{+\infty} e^{-t} \int_{\{N(x) \leq t\}} d x d t
$$

It is easy to check that $\left\{x \in \mathbb{R}^{n} ; N(x) \leq t\right\}=t X$, for all $t>0$, and hence

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-N(x)} d x=\int_{0}^{+\infty} e^{-t} t^{n} \operatorname{vol}(X) d t=n!\operatorname{vol}(X) \tag{7}
\end{equation*}
$$

So, combining (6) and (7) we conclude the desired lower estimate for vol (X) and by using Claim 1, Claim 2 and lemma 3.4 we obtain that

$$
v r\left(K_{2} ; L\right) \leq n!^{\frac{1}{n}}
$$

and hence, the result holds.

By using similar arguments we can prove the following result

Proposition 3.6. Let $K_{1}, K_{2} \subseteq \mathbb{R}^{n}$ are such that K_{1} is a compact set with $\operatorname{vol}\left(K_{1}\right)>$ $0, p\left(K_{1}\right)=p>0$ and K_{2} is a convex body, then:
(1) If K_{1} is symmetric, $\operatorname{vr}\left(K_{2} ; K_{1}\right) \leq \operatorname{vr}\left(K_{2} ; K_{1}\right) \leq \frac{e}{2}(n!)^{\frac{1}{n}} n^{\frac{1}{p}-1}$.
(2) If K_{2} is symmetric, $v r\left(K_{2} ; K_{1}\right) \leq v r\left(K_{2} ; K_{1}\right) \leq 2(n!)^{\frac{1}{n}} n^{\frac{1}{p}-1}$.

Proof:
(1) Take $\tilde{g}_{j}(t)=e^{t} \chi_{(\infty, 1]}(t)$ instead of $g_{j}(t)$ in the proof of proposition 3.5.
(2) Take $\tilde{f}_{j}(t)=e^{-t} \chi_{[0,+\infty)}(t)$ instead of $f_{j}(t)$ in the proof of proposition 3.5 and substitute $N(x)$ by

$$
\tilde{N}(x)= \begin{cases}\inf \left\{\sum_{k=1}^{N} \alpha_{k} ; \alpha_{k} \geq 0, x=\sum_{k=1}^{N} \alpha_{k} x_{k}\right\} & \text { if it exists } \\ +\infty & \text { otherwise }\end{cases}
$$

References

[Ba1] K.M. Ball, Volume Ratios and a reverse isoperimetric inequality, J. London Math. Soc. (2) 44 (1991), pp. 351-359.
[Ba2] K.M. Ball, Ellipsoids of Maximal Volume in convex bodies, Geometria Dedicata 41 (1992), pp. 241-250.
[Ba3] K.M. Ball, An Elementary Introduction to Modern Convex Geometry in Flavours of Geometry. Edited by S. Levy. Cambridge University Press. (1997), pp. 1-55.
[Bar] F. Barthe, Inégalités de Brascamp-Liev et convexité, C.R. Acad. Sci. Paris 324 (1997), pp. 885-888.
[E] H.G. Eggleston, Convexity, Cambridge Tracts in Math., vol. 47, Cambridge Univ. Press, London and New York (1969).
[G-P-T] A. Giannopoulos, I. Perissinaki and A. Tsolomitis, John's Theorem for an arbitrary pair of convex bodies, preprint.
[J] F. John, Extremum problems with inequalities as subsidiary conditions, Courant Anniversary Volume, New York (1948), pp. 187-204
[TJ] N. TomcZak-Jaegermann, Banach-Mazur distances and finite dimensional operator ideals, Pitman Monographs 38 (1989), Pitman, London.

Jesus Bastero: departamento de matemáticas, universidad de zaragoza, 50009-ZARAGOZA, SPAIN. e-mail:bastero@posta.unizar.es

Miguel Romance: departamento de matemáticas, universidad de zaragoza, 50009-ZARAGOZA, SPAIN. e-mail:mromance@posta.unizar.es

[^0]: * Partially supported by Grant D.G.E.S.I.C. (Spain)
 ** Supported by F.P.I. Grant D.G.E.S.I.C. (Spain)

