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Abstract. We present new methods to derive end point ver-
sions of Gehring’s Lemma using interpolation theory. We connect
reverse Hölder inequalities with Maurey-Pisier extrapolation and
extrapolation theory.

1. Introduction

It has been known for a long time that there exists a strong con-
nection between the theory of weighted norm inequalities for classical
operators and interpolation theory. However, one feels that there are
still many basic questions that remain open. In recent work we have
been exploring the interaction between weighted norm inequalities and
interpolation theory (cf. [1], [2], [3], [16]). In our work we have found
that ideas and methods from one field often lead to new ideas and re-
sults in the other. In particular in [1] we have shown a version of the
extrapolation theorem of Rubio de Francia (an important result from
the theory of weighted norm inequalities cf. [10]) in the context of the
real method of interpolation, while at same time observing that the ex-
trapolation methods of [15] yield extrapolation theorems in the theory
of weighted norm inequalities. Moreover, these developments led to
the study of certain classes of weights in connection with interpolation
theory and function spaces (cf. [1], [2]). In [3] and [1] we develop new
techniques to prove reverse type Hölder inequalities for certain types

1991 Mathematics Subject Classification. Primary 46M35, 42B25.
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of weights and in [16] we show an extension of Gehring’s Lemma via
Holmstedt’s formula and differential inequalities.

In this paper we continue to develop these connections. First we
consider some limiting cases of reverse Hölder inequalities which are
important in PDE’s and have been recently studied by R. Fefferman
[7] and R. Fefferman, C. Kenig and J. Pipher [8]. More precisely we
give new approaches to work by R. Fefferman [7] on a limiting case of
Gehring’s Lemma. Our method is based on the idea of using maximal
functions and rearrangement inequalities to reformulate the problem as
an inverse reiteration theorem (cf. [16]). Once the problem has been re-
formulated in this fashion we can also prove Fefferman’s result through
the use the iteration method developed in [3] and [1]. Indeed, using
this method we obtain a somewhat sharper result in as much as we get
a more precise estimate of the improvement obtained in the Gehring
type Lemma. (We note, however, that neither of our methods can be
expected to give sharp estimates on the improvement in the index of
integrability due to the constants that we accumulate to reformulate
the problem.)

A second problem we treat in this paper is motivated both by the
applications of weighted norm inequalities to PDE’s and some prob-
lems and methods from operator theory. In the applications to PDE’s
it is important to consider reverse Hölder inequalities where the cubes
involved in the estimates maybe dilations one of the other. We show
that if we reinterpret these conditions in terms of probability measures
we are in a situation that is also considered in functional analysis. In
fact in this fashion we connect reverse Hölder conditions, the extrap-
olation method of Maurey-Pisier [19] and extrapolation theory in the
sense of [15], [17]. Indeed we show that the Maurey-Pisier method can
be incorporated to the general theory of extrapolation of [15] through
the introduction of a suitable extrapolation functor. Conversely, the
method also applies in the realm of PDE’s and “cubes” (cf. [13]).

It has not been our purpose here to prove the most general results
but to illustrate the new methods arising from interactions between
interpolation theory and the theory of weighted norm inequalities. We
shall consider other applications and interactions elsewhere.
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2. Reverse Hölder’s Inequalities and Reiteration

Let us start recalling some well known facts from the theory of
weighted norm inequalities. As a general reference we use [10]. Let
Q0 be a fixed cube with sides parallel to the coordinate axes and let
w be a positive measurable function defined on Q0. We shall say that
w satisfies a Gehring condition (or a reverse Hölder inequality) if there
exists p > 1, and a constant c > 0, such that for every cube Q ⊂ Q0,
with sides parallel to the coordinate axes, we have{

1

|Q|

∫
Q

wp(x)dx

}1/p

≤ c
1

|Q|

∫
Q

w(x)dx.(2.1)

In this case we shall write w ∈ RHp. A well known result obtained by
Gehring [11] states that if w ∈ RHp then w satisfies a better integra-
bility condition, namely for sufficiently small ε > 0, and q = p + ε, we
have for every cube Q ⊂ Q0,{

1

|Q|

∫
Q

wq(x)dx

}1/q

≤ c

{
1

|Q|

∫
Q

wp(x)dx

}1/p

.

In other words, Gehring’s Lemma states that

w ∈ RHp =⇒ ∃ε > 0 s.t. w ∈ RHp+ε.

It is not difficult to extend Gehring’s Lemma by means of replacing
“dx” by a measure of the form dµ(x) = h(x)dx, as long as this measure
satisfies a doubling condition. In such case we should, of course, also
consider averages with respect to this measure, and replace |Q| by µ(Q).
Let us denote the corresponding classes RHp(dµ).

Let us also recall the definition of the Muckenhoupt Ap classes, which
control the weighted Lp norm inequalities for the maximal operator of
Hardy and Littlewood, and play a central role in the theory of weights.
For 1 < p < ∞, we say that w ∈ Ap if we have

sup
Q

(
1

|Q|

∫
Q

w(x)dx

)(
1

|Q|

∫
Q

w(x)−1/(p−1)dx

)p−1

< ∞.

Note that p′ = p/(p − 1), 1 − p′ = −1/(p − 1), therefore we see that
w ∈ Ap implies that for all Q ⊂ Q0,

|Q|−p′
(∫

Q
w(x)dx

)p′−1 ∫
Q

w(x)1−p′dx ≤ c.
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Consequently, if we write |Q| =
∫
Q w(x)w(x)−1dx, dµ = w(x)dx, we get(

1

µ(Q)

∫
Q

(
w(x)−1

)p′

dµ

)1/p′

≤ c
1

µ(Q)

∫
Q

w−1(x)dµ.

We have shown that: w ∈ Ap ⇒ w−1 ∈ RHp′(dµ). Therefore, by the
weighted version of Gehring’s Lemma, we can find ε > 0 such that

w−1 ∈ RHp′+ε(dµ),

and translating back in terms of Ap conditions we readily get

w ∈ Ap =⇒ ∃ε > 0 s.t. w ∈ Ap−ε.

This last property plays a central role in the theory of Ap weights. Let
us also define the A∞ condition by

A∞ =
∪
p>1

Ap.

There is a detailed study of A∞ and its relationship to RHp conditions
in the literature. In particular it is known that (cf. [6])

A∞ =
∪
p>1

RHp.

The usual proofs of Gehring’s Lemma involve the use of Calderón-
Zygmund decompositions and the scale structure of Lp spaces. How-
ever, only recently we observed in [16] an explicit connection of Gehring’s
Lemma to interpolation theory. More precisely, it was shown in [16]
that Gehring’s Lemma can be interpreted as an inverse type of reiter-
ation theorem valid in the general context of real interpolation spaces.
In particular a new proof of Gehring’s Lemma was then derived via
Holmstedt’s formula! Here is the statement of the result

Theorem 2.1. Let (A0, A1) be an ordered pair of Banach spaces (i.e.
A1 ⊂ A0) and suppose that f ∈ A0 is such that for some constant c > 1,
θ0 ∈ (0, 1), 1 ≤ p < ∞, we have for all t ∈ (0, 1),

K(t, f ; Aθ0,p;K , A1) ≤ ct
K(t1/(1−θ0), f ; A0, A1)

t1/(1−θ0)
.(2.2)

Then, there exists θ1 > θ0, such that for q ≥ p, 0 < t < 1, we have

K(t, f ; Aθ1,q;K , A1) ≈ t
K(t1/(1−θ1), f ; A0, A1)

t1/(1−θ1)
.(2.3)
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In order to formulate Gehring’s Lemma in this fashion we observe
that if define the local maximal operators of Hardy-Littlewood by

Mqw(x) = sup
Q⊂Q0,x∈Q

(
1

|Q|

∫
Q

w(u)qdu

)1/q

,

where q ∈ [1,∞), then w ∈ RHq implies the existence of c > 0 such
that

Mqw ≤ cMw.(2.4)

Taking rearrangements in (2.4), and using the well known fact (cf. [14],
[4]) that

(Mw)∗ (t) ≈ 1

t

∫ t

0
w∗(s)ds, 0 < t < |Q0| ,(2.5)

we see that (2.4) implies the following rearrangement inequality(
1

t

∫ t

0
w∗(s)qds

)1/q

≤ c

t

∫ t

0
w∗(s)ds, 0 < t < |Q0| .

Next, a well known formula for the K functionals for the pairs (Lp, L∞),
p ∈ (0,∞), (cf. [5]) can be used to show that the previous inequality
takes the form

K(t, w; Aθ0,q;K , A1) ≤ ct
K(t1/(1−θ0), w; A0, A1)

t1/(1−θ0)
,

with A0 = L1, A1 = L∞, θ0 = 1 − 1/q. Gehring’s Lemma can be read-
ily derived from this estimate, in fact we shall consider in detail the
mechanism involved in the proof in the next section where, moreover,
we consider an end point version of these results.

The proof of the theorem is given in [16] and is based on Holmstedt’s
formula and some elementary differential inequalities associated with
it.

3. An End Point Version of Gehring’s Lemma

In this section we consider a limiting case of Gehring’s Lemma due
to R. Fefferman which plays an interesting role in some problems in
PDE’s (cf. [7] and [8] for more on this). Our approach is entirely
different and based on interpolation theory. In fact our final result will
a limiting version of Theorem 2.1.

We would like to let q → 1 in the assumptions of Gehring’s Lemma:
this leads us to define the classes RHLLogL as follows. We shall say that
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w ∈ RHLLogL if there exists a constant c > 0, such that for every cube
Q ⊂ Q0, with sides parallel to the coordinate axes, we have

‖w‖L(LogL)(Q, dx
|Q| )

≤ c
1

|Q|

∫
Q

w(x)dx,(3.1)

where

‖w‖L(LogL)(Q, dx
|Q| )

= inf{λ > 0 :
1

|Q|

∫
Q

w(x)

λ
(1 + log+ w(x)

λ
)dx ≤ 1}.

It follows readily that

A∞ =
∪

RHp ⊂ RHLLogL.

We now show (cf. [7]) that we actually have

A∞ = RHLLogL.

At this point we need to introduce a maximal function associated
with L(LogL). Define,

ML(LogL)w(x) = sup
Q⊂Q0,x∈Q

‖w‖L(LogL)(Q, dx
|Q| )

.

It is known, and not difficult to see (cf. [20]), that

ML(LogL)w ≈ M(Mw).(3.2)

Therefore, if w ∈ RHLLogL, we see that

M(Mw)(x) ≤ cMw(x).(3.3)

We shall show that (3.3) implies the existence of q > 1 such that(
1

|Q0|

∫
Q0

wq(x)dx

)1/q

≤ c
1

|Q0|

∫
Q0

w(x)dx.(3.4)

Since this argument can be applied to any fixed subcube Q ⊂ Q0 simply
by considering localized maximal functions with respect to Q, we see
that

w ∈ RHL(LogL) ⇒ w ∈
∪
p>1

RHp.

We start by rearranging the inequality (3.3), then, using (2.5), we
get

(M(Mw))∗ (t) ≤ c (Mw)∗ (t)

1

t

∫ t

0
(Mw)∗(s)ds ≤ c (Mw)∗ (t)

P (2)w∗(t) ≤ cPw∗(t),(3.5)



REVERSE HÖLDER INEQUALITIES 7

where Pf(t) = 1
t

∫ t
0 f(s)ds, and P (2)f(t) = P (Pf)(t) = 1

t

∫ t
0 f(s) log t

s
ds.

Now if we take into account the fact that K(s, f, L1, L∞)/s = Pf ∗(s),
we can also rewrite the previous estimate as∫ t

0
K(s, w; L1, L∞)

ds

s
≤ cK(t, w; L1, L∞).(3.6)

Observe that (3.6) implies that there exists γ ∈ (0, 1) such that

d

dt
log(

∫ t

0
K(s, w; L1, L∞)

ds

s
) =

K(t, w; L1, L∞)/t∫ t
0 K(s, w; L1, L∞)ds

s

≥ γ

t
.

Therefore, if x < y, we see, integrating from x to y, that

log

(∫ y
0 K(s, w; L1, L∞)ds

s∫ x
0 K(s, w; L1, L∞)ds

s

)
≥ log(

y

x
)γ,

which leads to (∫ y
0 K(s, w; L1, L∞)ds

s∫ x
0 K(s, w; L1, L∞)ds

s

)
≥ (

y

x
)γ.

Consequently we obtain

y−γ
∫ y

0
K(s, w; L1, L∞)

ds

s
≥ x−γ

∫ x

0
K(s, w; L1, L∞)

ds

s
.

Note that by assumption

y−γ
∫ y

0
K(s, w; L1, L∞)

ds

s
≤ cy−γK(y, w; L1, L∞),

moreover, since K(s, f ; L1, L∞))/s decreases, we have

x−γ
∫ x

0
K(s, w; L1, L∞)

ds

s
≥ x−γK(x, w; L1, L∞).

Thus, the function x → x−γK(x,w; L1, L∞) is essentially increasing.
We now claim that for some θ ∈ (0, 1) we have∫ t

0
s−θK(s, w; L1, L∞)

ds

s
≤ ct−θK(t, w; L1, L∞).(3.7)

Assuming the validity of our claim and combining (3.7) with the fol-
lowing form of Holmstedt’s formula

K(t, f ; Āθ,1;K , A1) ≈
∫ t1/(1−θ)

0
s−θK(s, f ; A0, A1)

ds

s
,(3.8)

we see that the assumptions of Theorem 2.1 are verified, and conse-
quently we deduce the existence θ1 ∈ (0, 1) such that for all q ≥ 1 we
have
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K(t, w; (L1, L∞)θ1,q;K , L∞) ≈ t
K(t1/(1−θ1), w; L1, L∞)

t1/(1−θ1)
.

Selecting 1/q = 1 − θ1, and translating back, we obtain(
1

t

∫ t

0
w∗(s)qds

)1/q

≤ c
1

t

∫ t

0
w∗(s)ds, 0 < t < |Q0| .(3.9)

The inequality (3.9) applied to t = |Q0| gives(
1

|Q0|

∫
Q0

w(x)qdx

)1/q

=

(
1

|Q0|

∫ |Q0|

0
w∗(s)qds

)1/q

≤ c

|Q0|

∫ |Q0|

0
w∗(s)ds

=
c

|Q0|

∫
Q0

w(x)dx

as desired.
It remains to establish (3.7). We simply pick θ ∈ (0, γ), then using

the fact that x−γK(x,w; L1, L∞) is essentially increasing we find that∫ t

0
s−θK(s, w; L1, L∞)

ds

s
=
∫ t

0
s−θ+γs−γK(s, w; L1, L∞)

ds

s

≤ ct−γK(t, w; L1, L∞)
∫ t

0
s−θ+γ ds

s

= ct−γK(t, w; L1, L∞)tγ−θ

= ct−θK(t, w; L1, L∞),

as we wished to show.
The only part of the argument where we used specific information

about the pair (L1, L∞) was in order to translate (back and forwards)
the original problem. We have thus established an end point version of
Theorem 2.1 which corresponds to θ0 = 0.

Theorem 3.1. Let (A0, A1) be an ordered pair of Banach spaces (i.e.
A1 ⊂ A0) and suppose that f ∈ A0 is such that for some constant c > 1
we have ∀t ∈ (0, 1),∫ t

0
K(s, f ; A0, A1)

ds

s
≤ cK(t, f ; A0, A1).
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Then there exists θ ∈ (0, 1), such that for q ≥ 1, 0 < t < 1, we have

K(t, f ; Aθ,q;K , A1) ≈ t
K(t1/(1−θ), f ; A0, A1)

t1/(1−θ)
.

It is interesting to note, in comparing the assumptions in the previous
theorem with the ones in theorem 2.1, that the right formulation was
obtained by replacing the hypothesis of theorem 2.1 using Holmstedt’s

formula K(t, f ; Āθ0,1;K , A1) ≈
∫ t1/(1−θ0)

0 s−θ0K(s, f ; A0, A1)
ds
s
, and then

letting formally θ0 → 0 to derive the new hypothesis. We note that
in [12] there is also an extension of Holmstedt’s formula for the case
when θ = 0 which in our context is related to a different way of defining
maximal functions using Orlicz functions. For more on the relationship
between reiteration formulae for extrapolation spaces and generalized
Reversed Hölder inequalities see [18].

4. The Iteration Method

In this section we rederive the end point version of Gehring’s Lemma
discussed in the previous section using a completely different method.
The method we employ here was developed by the authors to attack
some problems connected with the application of weighted norm in-
equalities in interpolation theory in [3] and [1]. It is based on the
iteration of inequalities and it probably has its roots in the early work
of Gagliardo [9].

Let us then assume again that w is such that for some constant c we
have

M(Mw) ≤ cMw.

Rearranging, we may take as our starting point the estimate (cf. (3.5)
above)

P (2)w∗(t) ≤ cPw∗(t).

Now we iterate applying repeatedly the operator P to both sides of
the inequality and get

P (n)w∗(t) ≤ cn−1Pw∗(t), n = 2, 3, ...

Pick ε > 0 such that εc < 1 and multiply the corresponding nth in-
equality by εn−1, n = 2, 3, .... Summing we get

∑
n>1

εnP (n)w∗(t) ≤
(∑

n=1

εncn

)
Pw∗(t).(4.1)
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Since

P (n)w∗(t) =
1

(n − 1)!

1

t

∫ t

0
w∗(s)

(
log

t

s

)n−1

ds,

we see that∑
n>1

εnP (n)w∗(t) =
∑
n>1

εn 1

(n − 1)!

1

t

∫ t

0
w∗(s)

(
log

t

s

)n−1

ds

=
1

t

∫ t

0
w∗(s)ε

∑
n>1

1

(n − 1)!

(
log

(
t

s

)ε)n−1

ds

=
ε

t

∫ t

0
w∗(s)[

(
t

s

)ε

− 1]ds.

Inserting this back in (4.1) we obtain, for a suitable constant C,

1

t

∫ t

0
w∗(s)

(
t

s

)ε

ds ≤ CPw∗(t).

Combining the last estimate with the elementary inequality (cf. [5])(
1

t

∫ t

0
w∗(s)1/(1−ε)ds

)1−ε

≤ t1−ε
∫ t

0
w∗(s)s−εds,

we obtain, with q = 1/(1 − ε),

(
1

t

∫ t

0
w∗(s)qds

)1/q

≤ cPw∗(t).

The argument we gave in the previous section (right at the point where
(3.9) was established) can be now used to obtain the desired result:(

1

|Q0|

∫
Q0

w(x)qdx

)1/q

≤ c

|Q0|

∫
Q0

w(x)dx.

We note that the argument just presented is contained in [1] in con-
nection with reversed Hölder type conditions for weights in the M1

class, which are precisely the weights that satisfy the condition (3.5).

5. Gehring’s lemma and Maurey-Pisier Extrapolation

It is also natural to ask what happens if in (2.1) we fix p > 1 and
consider the improvement to this inequality that would result from
lowering the exponent on the right hand side. Namely, we consider if
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the validity of (2.1) implies that for some r < 1, the following inequality
holds {

1

|Q|

∫
Q

wp(x)dx

}1/p

≤ c

{
1

|Q|

∫
Q

wr(x)dx

}1/r

.(5.1)

It turns out that this is true, and well known, and in fact the proof
is an immediate consequence of Hölder’s inequality.

Lemma 5.1. Suppose that w satisfies the condition (2.1) then ∀ r ∈
(0, 1), w satisfies (5.1).

Proof. Given r ∈ (0, 1), choose θ ∈ (0, 1) such that

1 =
1 − θ

p
+

θ

r
.

Then, by Hölder’s inequality, we have{
1

|Q|

∫
Q

wp(x)dx

}1/p

≤ c
1

|Q|

∫
Q

w(x)dx

≤ c

{
1

|Q|

∫
Q

w(x)pdx

}(1−θ)/p {
1

|Q|

∫
Q

w(x)rdx

}θ/r

.

Therefore, dividing, we find{
1

|Q|

∫
Q

wp(x)dx

}θ/p

≤ c

{
1

|Q|

∫
Q

(w(x))r dx

}θ/r

,

and the result follows.

Conditions of the form (2.1) and (5.1) appear in other contexts in
analysis. In these applications it is important to extrapolate, as indi-
cated in Lemma 5.1, even though the cubes appearing on both sides
of the hypothesized inequalities may be different. This is, for example,
the case that appears commonly in problems in PDE’s where cubes on
each side of (2.1) are dilations one of the other. For a treatment of
problems in this direction we refer to [13]. However, to connect this
extrapolation process with other problems in functional analysis it is
important to reformulate the problem in a more general context. In
fact in the context of (2.1) one could view the conditions arising from
PDE applications and consider conditions of the form: ∀ λ probability
measure in Ω there exists a probability measure µ such that{∫

Ω
|w(x)|p dλ

}1/p

≤ c
∫
Ω
|w(x)| dµ.(5.2)
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The argument in the previous Lemma would work if we had the same
measure on both sides of the inequality. In order to arrange to have
such a situation we use a method developed by Maurey and Pisier
which essentially allows one to replace (5.2) with suitable norms so
that the method of Lemma 5.1 can be applied. The process involved
is via iteration and could be considered as a “fixed point theorem” for
functional spaces.

Let us then consider the Maurey-Pisier method slightly rephrased
so that it can be incorporated as a more general argument in the ex-
trapolation theory of Jawerth-Milman. The appropriate extrapolation
functor here is the ∆1 functor. Recall that if {Xγ}γ∈I is a compatible
family of Banach spaces we formally let

∆1

(
{Xγ}γ∈I

)
= {f :

∑
γ∈I

‖f‖Xγ
< ∞},

with

‖f‖∆1({Xγ}γ∈I)
=
∑
γ∈I

‖f‖Xγ
.

Here is a typical example of such a construction. Let {(Xj
0 , X

j
1)}∞j=1

be a family of Banach pairs, and let us consider the corresponding
interpolation spaces Xj

θ = Fθ(X
j
0 , X

j
1), where {Fθ}θ∈(0,1) is a family of

interpolation functors. Let

X(θ) = ∆1 ({2−nXn
θ }

∞
n=1) , θ ∈ [0, 1].

A natural assumption on the family of functors {Fθ}θ∈(0,1) is that for

θ ∈ (0, 1), we have

‖f‖Xθ
≤ ‖f‖1−θ

X0
‖f‖θ

X1
,(5.3)

or in other words that the functors are exact of type θ. Then (5.3)
persists at the level of the extrapolation spaces:

‖f‖X(θ) =
∞∑

n=1

2−n ‖f‖Xθ
≤

∞∑
n=1

2−n(1−θ) ‖f‖1−θ
Xn

0
2−nθ ‖f‖θ

Xn
1

≤
( ∞∑

n=1

2−n ‖f‖Xn
0

)1−θ ( ∞∑
n=1

2−n ‖f‖Xn
1

)θ

= ‖f‖1−θ
X(0) ‖f‖

θ
X(1) .

This construction allows us to consider the argument of Maurey-
Pisier from an interpolation-extrapolation view point. In fact note
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that

‖f‖∆1({2−nXn
θ }

∞
n=2

) ≤ 2 ‖f‖∆1({2−nXn
θ }

∞
n=1

) .

Therefore if we start with the assumption (5.2) and are given a prob-
ability measure λ we construct a sequence of probability measures
{λn}∞n=1, with λ1 = λ, so that{∫

Ω
|w(x)|p dλn

}1/p

≤ c
∫
Ω
|w(x)| dλn+1, n = 1, 2, ...

Applying the ∆1 functor we get

‖w‖∆1({2−nLp(dλn)}∞n=1) ≤ c ‖w‖∆1({2−nL1(dλn)}∞n=2)

≤ 2c ‖w‖∆1({2−nL1(dλn)}∞n=1) .

At this stage the argument of Lemma 5.1 can be applied verbatim in
view of our previous discussion. Indeed, for any r < 1, let us write
1 = 1−θ

p
+ θ

r
, with θ ∈ (0, 1), then

‖w‖∆1({2−nL1(dλn)}∞n=1) ≤
(
‖w‖∆1({2−nLp(dλn)}∞n=1)

)1−θ (
‖w‖∆1({2−nLr(dλn)}∞n=1)

)θ
,

and thus

‖w‖∆1({2−nLp(dλn)}∞n=1) ≤ C ‖w‖∆1({2−nLr(dλn)}∞n=1) .

We can rephrase this estimate in terms of the original assumptions
if we observe that

{∫
Ω
|w(x)|p dλ

}1/p

≤ 2 ‖w‖∆1({2−nLp(dλn)}∞n=1) ,

and

‖w‖∆1({2−nLr(dλn)}∞n=1) =
∞∑

n=1

2−n
{∫

Ω
|w(x)|r dλn

}1/r

≤
{ ∞∑

n=1

2−nr
∫
Ω
|w(x)|r dλn

}1/r

=

( ∞∑
n=1

2−nr

)1/r {∫
Ω
|w(x)|r

∑∞
n=1 2−nrdλn∑∞

n=1 2−nr

}1/r

= c
(∫

Ω
|w(x)|r dµ

)1/r

,
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where µ =
∑∞

n=1
2−nrdλn∑∞

n=1
2−nr is a probability measure on Ω. We have thus

obtained the following

Theorem 5.2. (Maurey-Pisier extrapolation) Suppose w is such that
for each probability measure λ on Ω there exists a probability measure
µ such that (5.2) holds for a universal constant c > 0. Then ∀r ∈ (0, 1)
there exists a constant C > 0 such that for each probability measure λ
there exists a probability measure µ such that{∫

Ω
|w(x)|p dλ

}1/p

≤ C
(∫

Ω
|w(x)|r dµ

)1/r

.
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