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Abstract. In this note we prove the p-convex analogue of both Caratheodory’s
convexity theorem and Gluskin’s theorem concerning the diameter of Minkowski com-
pactum.

Throughout this note X will denote a real vector space and p will be a real
number, 0 < p < 1. A set A ⊆ X is called p-convex if λx + µy ∈ A, whenever
x, y ∈ A, and λ, µ ≥ 0, with λp + µp = 1. Given A ⊆ X, the p-convex hull of A is
defined as the intersection of all p-convex sets that contain A. Such set is denoted
by p-conv (A). A (real) p-normed space (X, ‖ · ‖) is a (real) vector space equipped
with a quasi-norm such that ‖x + y‖p ≤ ‖x‖p + ‖y‖p,∀x, y ∈ X. The unit ball of a
p-normed space is a p-convex set and will be denoted by BX .

We denote by Mp
n the class of all n-dimensional p-normed spaces. If X, Y ∈Mp

n

the Banach-Mazur distance d(X, Y ) is the infimun of the products ‖T‖·‖T−1‖, where
the infimun is taken over all the isomorphisms T from X onto Y . We shall use the
notation and terminology commonly used in Banach space theory as it appears in
[Tmcz].

The problem we are concerned about is an aspect of the local structure of finite
dimensional p-Banach spaces. The well known theorem of Gluskin gives a sharp
lower bound of the diameter of the Minkowski compactum. In [Gl] it is proved that
diam(M1

n) ≥ cn for some absolute constant c. Our purpose is to study this problem
in the p-convex setting. In [Pe], T. Peck gave an upper bound of the diameter of Mp

n

namely, diam(Mp
n) ≤ n2/p−1. We will show that such bound is optimum (Theorem

2). When proving it, in order to compute some volumetric estimates, it will be
necessary to have the corresponding version for p < 1 of Caratheodory’s convexity
theorem (Theorem 1).

The results of this note are the following:

Theorem 1. Let A ⊆ IRn and 0 < p < 1. For every x ∈ p-conv (A), x 6= 0
there exist linearly independent vectors {P1 . . . Pk} ⊆ A with k ≤ n, such that
x ∈ p-conv {P1 . . . Pk}. Moreover, if 0 ∈ p-conv (A), there exits {P1 . . . Pk} ⊆ A with
k ≤ n + 1 such that 0 ∈ p-conv {P1 . . . Pk}.

and
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Theorem 2. Let 0 < p < 1. There exits a constant Cp > 0 such that for every
n ∈ IN

Cpn
2/p−1 ≤ diam(Mp

n) ≤ n2/p−1.

Observe that Theorem 1 looks stronger than Caratheodory’s one in the sense
that we get k ≤ n and only k ≤ n + 1 can be assured for p = 1 (see [Eg], pg 35). It
will be clear that this is not such since vector 0 plays a particularly special role.

We begin by recalling the main property of p-convex hulls. It is probably known
but since we have not found it in any reference we sketch its proof.

Lemma 1. Let A ⊂ X. The p-convex hull of A coincides with the set of all finite
sums

∑
λixi where xi are taken from A (possibly with repetition), λi ≥ 0 and

0 <
∑

λp
i ≤ 1.

Proof. Straighforward arguments show that p-conv (A) coincides with the set of all
finite sums

∑
λixi, xi ∈ A, λi ≥ 0 and

∑
λp

i = 1. Now, we only have to prove that
every non zero element x of the form x =

∑n
i=1 λixi, xi ∈ A,

∑n
i=1 λp

i < 1 can be
written as x =

∑m
i=1 µiyi, yi ∈ A,

∑m
1 µp

i = 1. Suppose λ1 6= 0. Write λ1 =
∑k

i=1 βi,
with βi ≥ 0. We have

∑n
i=1 λp

i ≤
∑k

i=1 βp
i +

∑n
i=2 λp

i ≤ k1−pλp
1 +

∑n
i=2 λp

i . It is
now clear, by a continuity argument, that we can find k and βi ≥ 0, 1 ≤ i ≤ k,
such that λ1 =

∑k
i=1 βi and

∑k
i=1 βp

i +
∑n

i=2 λp
i = 1. The representation x =∑k

i=1 βixi +
∑n

i=2 λixi does the job. ///

Remark. Observe in particular says that for every 0 6= x ∈ X, p-conv {x} = (0, x] =
{λx; 0 < λ ≤ 1}. This situation is rather different from the case when p = 1.

Proof of Theorem 1. Let x ∈ p-conv (A), x 6= 0. Let N be the smallest integer
so that x in the p-convex hull of a subset {P1, ..., PN} of A. Consider the set of
all (αi) ≥ 0 with x =

∑N
i=1 αiPi, 0 <

∑N
i=1 αp

i ≤ 1. Minimize
∑N

i=1 αp
i on this

set and denote the optimum by (λi). Clearly λi > 0, for all i = 1, ..., N . Suppose
{P1, ..., PN} are linearly dependent; then there exists nontrivial coeficients (µi) so
that

∑N
i=1 µiPi = 0. If δ > 0 is small enough all the coefficients λi + tµi > 0 and

the function φ(t) =
∑N

i=1(λi + tµi)p defined for t ∈ (−δ, δ) has a minimum in t = 0,
which contradicts the fact that the second derivative of φ(t) is negative.

If 0 ∈ p-conv (A) then 0 =
∑N

i=1 λiPi, Pi ∈ A, λi > 0, ∀ i and
∑N

i=1 λp
i = 1. We

can suppose P1 . . . Pm linearly independent with m ≤ n. We consider
∑m+1

i=1 λiPi =
−

∑N
i=m+2 λiPi. If we apply the first part of the proof to x̃ =

∑m+1
i=1 λis

−1Pi, sp =∑m+1
i=1 λp

i we obtain
∑m

i=1 βiPi = −
∑N

i=m+2 λiPi, with
∑m

i=1 βp
i ≤ 1. Hence 0 ∈ p-

convex envelope of N−1 points. Repeat the argument until reaching a representation
of length ≤ n + 1. ///

Next we are going to prove Theorem 2. The proof follows Gluskin’s original ideas.
We first introduce some notation. Sn−1 will denote the euclidean sphere in IRn with
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its normalized Haar measure µn−1 and Ω will be the product space Sn−1× n). . . ×Sn−1

endowed with the product probability IP . If K ⊆ IRn, |K| is the Lebesgue measure
of K. If A = (P1, . . . , Pn) ⊂ Ω, we write Qp(A) = p-conv {±ei,±Pi | 1 ≤ i ≤ n},
being {ei}n

i=1 the canonical basis of IRn. We denote by ‖ · ‖Qp(A) the p-norm in IRn

whose unit ball is Qp(A).

We only need to prove that for some absolute constant Cp > 0, there ex-
ist A,A′ ∈ Ω such that simultaneously both ‖T‖Qp(A)→Qp(A′) ≥ Cpn

1/p−1/2 and
‖T−1‖Qp(A′)→Qp(A) ≥ Cpn

1/p−1/2 hold for any T ∈ SL(n) (that is, any linear iso-
morphism in IRn with det T = 1).

Straightforward argument shows that it is enough to see that for any A′ ∈ Ω,
IP{A ∈ Ω | ‖T‖Qp(A)→Qp(A′) < Cpn

1/p−1/2 for some T ∈ SL(n) } < 1
2 .

Fix A′ ∈ Ω, t > 0, and write Ω(A′, t) = {A ∈ Ω | ‖T‖Qp(A)→Qp(A′) <
t for some T ∈ SL(n)}.

The proof of the following lemma is analogous to the one in the case p = 1 (see
[Tmcz], §38).

Lemma 2. Let A′ ∈ Ω and t > 0.
i) There exists a tp-net N(A′, t) in {T ∈ SL(n) | ‖T‖`n

p→Qp(A′) ≤ t} with respect

to the metric induced by ‖ · ‖p
`n
2→Qp(A′) of cardinality

|N(A′, t) | ≤ (31/pn1/p−1/2)n2 |Qp(A′)|n

| {T ∈ SL(n) | ‖T‖`n
2→`n

2
≤ 1} |

ii)

Ω(A′, t) ⊆
⋃

T∈N(A′,t)

{A ∈ Ω | ‖T (Pi)‖Qp(A′) ≤ 21/pt,∀Pi ∈ A}

iii) Given T ∈ SL(n),

IP{A ∈ Ω | ‖T (Pi)‖Qp(A′) ≤ 21/pt,∀Pi ∈ A} ≤ (21/pt)n2
(
| Qp(A′) |
|B`n

2
|

)n

Proof of Theorem 2: Numerical constants are always denoted by the same letters C
(or Cp, if it depends only on p) although they may have different value from line to
line. Using consecutively the three preceding lemmas we have for every A′ ∈ Ω and
t > 0,

IP
(
Ω(A′, t)

)
≤ (Cptn

1/p−1/2)n2 |Qp(A′)|2n

|B`n
2
|n · | {T ∈ SL(n) | ‖T‖`n

2→`n
2
≤ 1} |

It is well known that for some absolute constant C > 0, (see [Tmcz]), we have
| {T ∈ SL(n) | ‖T‖`n

2→`n
2
≤ 1} | ≥ Cn2 |B`n

2
|n.

Let A′ = {P1, . . . Pn}. By Theorem 1, Qp(A′) ⊆
⋃

p-conv {Pk1 , . . . , Pkn
}

where the union runs over the
(4n

n

)
choices of {Pki}n

i=1 ⊆ {±ei,±Pi, 1 ≤ i ≤
n}. Since ‖Pi‖2 = 1 and |p-conv {Pk1 , . . . , Pkn

}| is equal to |det [Pk1 , . . . , Pkn
] | ·
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|p-conv {e1, . . . , en}|, we get |Qp(A′)| ≤
(
4n
n

) |B`n
p
|

2n ≤ Cn
p n−n/p2−n for some constant

Cp (see [Pi], pg 11). Hence, IP
(
Ω(A′, t)

)
≤ (Cptn

1/2−1/p)n2
. If we take a suitable

t > 0, we can assure IP
(
Ω(A′, t)

)
<

1
2

and the result follows. ///

Remark. With straighforward variations in the proof we can state the following
result: Given 0 < p ≤ 1 and 0 < α < 1, there exists a constant 0 < C(p, α) < 1
such that for any natural number N we can find two αN -dimensional quotients of
`N
p having Banach-Mazur distance greater than or equal to C(p, α)N2/p−1.

Remark. Given a p-normed space X and p < q ≤ 1, we define the q-Banach envelope
of X as the q-normed space, Xq, whose unit ball es the q-convex envelope of the unit
ball of X. It is easy to see that d(X, Xq) ≤ d(X, Y ) for any n-dimensional q-normed
space Y (see [Pe],[G-K]). Theorem 1 shows that d(X, Xq) ≤ n1/p−1/q. Indeed, for
every x ∈ BXq , ‖x‖Xq = 1 there exist P1, . . . , Pn ∈ BX such that x =

∑n
i=1 λiPi

with λi ≥ 0,
∑n

i=1 λq
i ≤ 1 and 1 ≤ ‖x‖X ≤

∑n
i=1 λp

i ‖Pi‖p
X ≤

∑n
i=1 λp

i ≤ n1/p−1/q; by
homogeneity we achieve the result. Now it is easy to see that if X, Y are the spaces
appearing in Theorem 2, then d(X, Xq) ≥ Cpn

1/p−1/q, d(Y, Y q) ≥ Cpn
1/p−1/q and

d(Xq, Y q) ≥ Cpn
2/q−1. In particular, for q = 1, d(X, X1) ≥ Cpn

1/p−1 , d(Y, Y 1) ≥
Cpn

1/p−1 and d(X1, Y 1) ≥ Cpn.
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