The theorems of Caratheodory and Gluskin for $0<p<1$

by
Jesús Bastero * , Julio Bernués * and Ana Peña **
Departamento de Matemáticas. Facultad de Ciencias
Universidad de Zaragoza
50009-Zaragoza (Spain)

Abstract. In this note we prove the p-convex analogue of both Caratheodory's convexity theorem and Gluskin's theorem concerning the diameter of Minkowski compactum.

Throughout this note X will denote a real vector space and p will be a real number, $0<p<1$. A set $A \subseteq X$ is called p-convex if $\lambda x+\mu y \in A$, whenever $x, y \in A$, and $\lambda, \mu \geq 0$, with $\lambda^{p}+\mu^{p}=1$. Given $A \subseteq X$, the p-convex hull of A is defined as the intersection of all p-convex sets that contain A. Such set is denoted by p-conv (A). A (real) p-normed space $(X,\|\cdot\|)$ is a (real) vector space equipped with a quasi-norm such that $\|x+y\|^{p} \leq\|x\|^{p}+\|y\|^{p}, \forall x, y \in X$. The unit ball of a p-normed space is a p-convex set and will be denoted by B_{X}.

We denote by \mathcal{M}_{n}^{p} the class of all n-dimensional p-normed spaces. If $X, Y \in \mathcal{M}_{n}^{p}$ the Banach-Mazur distance $d(X, Y)$ is the infimun of the products $\|T\| \cdot\left\|T^{-1}\right\|$, where the infimun is taken over all the isomorphisms T from X onto Y. We shall use the notation and terminology commonly used in Banach space theory as it appears in [Tmcz].

The problem we are concerned about is an aspect of the local structure of finite dimensional p-Banach spaces. The well known theorem of Gluskin gives a sharp lower bound of the diameter of the Minkowski compactum. In [Gl] it is proved that $\operatorname{diam}\left(\mathcal{M}_{n}^{1}\right) \geq c n$ for some absolute constant c. Our purpose is to study this problem in the p-convex setting. In [Pe], T. Peck gave an upper bound of the diameter of \mathcal{M}_{n}^{p} namely, $\operatorname{diam}\left(\mathcal{M}_{n}^{p}\right) \leq n^{2 / p-1}$. We will show that such bound is optimum (Theorem 2). When proving it, in order to compute some volumetric estimates, it will be necessary to have the corresponding version for $p<1$ of Caratheodory's convexity theorem (Theorem 1).

The results of this note are the following:

Theorem 1. Let $A \subseteq \mathbb{R}^{n}$ and $0<p<1$. For every $x \in p$-conv $(A), x \neq 0$ there exist linearly independent vectors $\left\{P_{1} \ldots P_{k}\right\} \subseteq A$ with $k \leq n$, such that $x \in p$-conv $\left\{P_{1} \ldots P_{k}\right\}$. Moreover, if $0 \in p$-conv (A), there exits $\left\{P_{1} \ldots P_{k}\right\} \subseteq A$ with $k \leq n+1$ such that $0 \in p$-conv $\left\{P_{1} \ldots P_{k}\right\}$.
and

[^0]Theorem 2. Let $0<p<1$. There exits a constant $C_{p}>0$ such that for every $n \in \mathbb{N}$

$$
C_{p} n^{2 / p-1} \leq \operatorname{diam}\left(\mathcal{M}_{n}^{p}\right) \leq n^{2 / p-1}
$$

Observe that Theorem 1 looks stronger than Caratheodory's one in the sense that we get $k \leq n$ and only $k \leq n+1$ can be assured for $p=1$ (see [Eg], pg 35). It will be clear that this is not such since vector 0 plays a particularly special role.

We begin by recalling the main property of p-convex hulls. It is probably known but since we have not found it in any reference we sketch its proof.

Lemma 1. Let $A \subset X$. The p-convex hull of A coincides with the set of all finite sums $\sum \lambda_{i} x_{i}$ where x_{i} are taken from A (possibly with repetition), $\lambda_{i} \geq 0$ and $0<\sum \lambda_{i}^{p} \leq 1$.

Proof. Straighforward arguments show that p-conv (A) coincides with the set of all finite sums $\sum \lambda_{i} x_{i}, x_{i} \in A, \lambda_{i} \geq 0$ and $\sum \lambda_{i}^{p}=1$. Now, we only have to prove that every non zero element x of the form $x=\sum_{i=1}^{n} \lambda_{i} x_{i}, x_{i} \in A, \sum_{i=1}^{n} \lambda_{i}^{p}<1$ can be written as $x=\sum_{i=1}^{m} \mu_{i} y_{i}, y_{i} \in A, \sum_{1}^{m} \mu_{i}^{p}=1$. Suppose $\lambda_{1} \neq 0$. Write $\lambda_{1}=\sum_{i=1}^{k} \beta_{i}$, with $\beta_{i} \geq 0$. We have $\sum_{i=1}^{n} \lambda_{i}^{p} \leq \sum_{i=1}^{k} \beta_{i}^{p}+\sum_{i=2}^{n} \lambda_{i}^{p} \leq k^{1-p} \lambda_{1}^{p}+\sum_{i=2}^{n} \lambda_{i}^{p}$. It is now clear, by a continuity argument, that we can find k and $\beta_{i} \geq 0,1 \leq i \leq k$, such that $\lambda_{1}=\sum_{i=1}^{k} \beta_{i}$ and $\sum_{i=1}^{k} \beta_{i}^{p}+\sum_{i=2}^{n} \lambda_{i}^{p}=1$. The representation $\bar{x}=$ $\sum_{i=1}^{k} \beta_{i} x_{i}+\sum_{i=2}^{n} \lambda_{i} x_{i}$ does the job.

Remark. Observe in particular says that for every $0 \neq x \in X, p$-conv $\{x\}=(0, x]=$ $\{\lambda x ; 0<\lambda \leq 1\}$. This situation is rather different from the case when $p=1$.

Proof of Theorem 1. Let $x \in p$-conv $(A), x \neq 0$. Let N be the smallest integer so that x in the p-convex hull of a subset $\left\{P_{1}, \ldots, P_{N}\right\}$ of A. Consider the set of all $\left(\alpha_{i}\right) \geq 0$ with $x=\sum_{i=1}^{N} \alpha_{i} P_{i}, 0<\sum_{i=1}^{N} \alpha_{i}^{p} \leq 1$. Minimize $\sum_{i=1}^{N} \alpha_{i}^{p}$ on this set and denote the optimum by $\left(\lambda_{i}\right)$. Clearly $\lambda_{i}>0$, for all $i=1, \ldots, N$. Suppose $\left\{P_{1}, \ldots, P_{N}\right\}$ are linearly dependent; then there exists nontrivial coeficients $\left(\mu_{i}\right)$ so that $\sum_{i=1}^{N} \mu_{i} P_{i}=0$. If $\delta>0$ is small enough all the coefficients $\lambda_{i}+t \mu_{i}>0$ and the function $\phi(t)=\sum_{i=1}^{N}\left(\lambda_{i}+t \mu_{i}\right)^{p}$ defined for $t \in(-\delta, \delta)$ has a minimum in $t=0$, which contradicts the fact that the second derivative of $\phi(t)$ is negative.

If $0 \in p$-conv (A) then $0=\sum_{i=1}^{N} \lambda_{i} P_{i}, P_{i} \in A, \lambda_{i}>0, \forall i$ and $\sum_{i=1}^{N} \lambda_{i}^{p}=1$. We can suppose $P_{1} \ldots P_{m}$ linearly independent with $m \leq n$. We consider $\sum_{i=1}^{m+1} \lambda_{i} P_{i}=$ $-\sum_{i=m+2}^{N} \lambda_{i} P_{i}$. If we apply the first part of the proof to $\tilde{x}=\sum_{i=1}^{m+1} \lambda_{i} s^{-1} P_{i}, s^{p}=$ $\sum_{i=1}^{m+1} \lambda_{i}^{p}$ we obtain $\sum_{i=1}^{m} \beta_{i} P_{i}=-\sum_{i=m+2}^{N} \lambda_{i} P_{i}$, with $\sum_{i=1}^{m} \beta_{i}^{p} \leq 1$. Hence $0 \in p$ convex envelope of $N-1$ points. Repeat the argument until reaching a representation of length $\leq n+1$.

Next we are going to prove Theorem 2. The proof follows Gluskin's original ideas. We first introduce some notation. S^{n-1} will denote the euclidean sphere in \mathbb{R}^{n} with
its normalized Haar measure μ_{n-1} and Ω will be the product space $S^{n-1} \times \xrightarrow{n} . \times S^{n-1}$ endowed with the product probability \mathbb{P}. If $K \subseteq \mathbb{R}^{n},|K|$ is the Lebesgue measure of K. If $A=\left(P_{1}, \ldots, P_{n}\right) \subset \Omega$, we write $Q_{p}(A)=p$-conv $\left\{ \pm e_{i}, \pm P_{i} \mid 1 \leq i \leq n\right\}$, being $\left\{e_{i}\right\}_{i=1}^{n}$ the canonical basis of \mathbb{R}^{n}. We denote by $\|\cdot\|_{Q_{p}(A)}$ the p-norm in \mathbb{R}^{n} whose unit ball is $Q_{p}(A)$.

We only need to prove that for some absolute constant $C_{p}>0$, there exist $A, A^{\prime} \in \Omega$ such that simultaneously both $\|T\|_{Q_{p}(A) \rightarrow Q_{p}\left(A^{\prime}\right)} \geq C_{p} n^{1 / p-1 / 2}$ and $\left\|T^{-1}\right\|_{Q_{p}\left(A^{\prime}\right) \rightarrow Q_{p}(A)} \geq C_{p} n^{1 / p-1 / 2}$ hold for any $T \in \mathrm{SL}(n)$ (that is, any linear isomorphism in \mathbb{R}^{n} with $\operatorname{det} T=1$).

Straightforward argument shows that it is enough to see that for any $A^{\prime} \in \Omega$, $\mathbb{P}\left\{A \in \Omega \mid\|T\|_{Q_{p}(A) \rightarrow Q_{p}\left(A^{\prime}\right)}<C_{p} n^{1 / p-1 / 2}\right.$ for some $\left.T \in \operatorname{SL}(n)\right\}<\frac{1}{2}$.

Fix $A^{\prime} \in \Omega, t>0$, and write $\Omega\left(A^{\prime}, t\right)=\left\{A \in \Omega \mid\|T\|_{Q_{p}(A) \rightarrow Q_{p}\left(A^{\prime}\right)}<\right.$ t for some $T \in \mathrm{SL}(n)\}$.

The proof of the following lemma is analogous to the one in the case $p=1$ (see [Tmcz], §38).

Lemma 2. Let $A^{\prime} \in \Omega$ and $t>0$.
i) There exists a t^{p}-net $N\left(A^{\prime}, t\right)$ in $\left\{T \in \operatorname{SL}(n)\left\|\|T\|_{\ell_{p}^{n} \rightarrow Q_{p}\left(A^{\prime}\right)} \leq t\right\}\right.$ with respect to the metric induced by $\|\cdot\|_{\ell_{2}^{n} \rightarrow Q_{p}\left(A^{\prime}\right)}^{p}$ of cardinality

$$
\left|N\left(A^{\prime}, t\right)\right| \leq\left(3^{1 / p} n^{1 / p-1 / 2}\right)^{n^{2}} \frac{\left|Q_{p}\left(A^{\prime}\right)\right|^{n}}{\left|\left\{T \in \mathrm{SL}(n) \mid\|T\|_{2}^{n} \rightarrow \ell_{2}^{n} \leq 1\right\}\right|}
$$

ii)

$$
\Omega\left(A^{\prime}, t\right) \subseteq \bigcup_{T \in N\left(A^{\prime}, t\right)}\left\{A \in \Omega \mid\left\|T\left(P_{i}\right)\right\|_{Q_{p}\left(A^{\prime}\right)} \leq 2^{1 / p} t, \forall P_{i} \in A\right\}
$$

iii) Given $T \in \operatorname{SL}(n)$,

$$
\mathbb{P}\left\{A \in \Omega \mid\left\|T\left(P_{i}\right)\right\|_{Q_{p}\left(A^{\prime}\right)} \leq 2^{1 / p} t, \forall P_{i} \in A\right\} \leq\left(2^{1 / p} t\right)^{n^{2}}\left(\frac{\left|Q_{p}\left(A^{\prime}\right)\right|}{\left|B_{\ell_{2}^{n}}\right|}\right)^{n}
$$

Proof of Theorem 2: Numerical constants are always denoted by the same letters C (or C_{p}, if it depends only on p) although they may have different value from line to line. Using consecutively the three preceding lemmas we have for every $A^{\prime} \in \Omega$ and $t>0$,

$$
\mathbb{P}\left(\Omega\left(A^{\prime}, t\right)\right) \leq\left(C_{p} t n^{1 / p-1 / 2}\right)^{n^{2}} \frac{\left|Q_{p}\left(A^{\prime}\right)\right|^{2 n}}{\left|B_{\ell_{2}^{n}}\right|^{n} \cdot\left|\left\{T \in \mathrm{SL}(n) \mid\|T\|_{\ell_{2}^{n} \rightarrow \ell_{2}^{n}} \leq 1\right\}\right|}
$$

It is well known that for some absolute constant $C>0$, (see [Tmcz]), we have $\left|\left\{T \in \mathrm{SL}(n) \mid\|T\|_{\ell_{2}^{n} \rightarrow \ell_{2}^{n}} \leq 1\right\}\right| \geq C^{n^{2}}\left|B_{\ell_{2}^{n}}\right|^{n}$.

Let $A^{\prime}=\left\{P_{1}, \ldots P_{n}\right\}$. By Theorem 1, $Q_{p}\left(A^{\prime}\right) \subseteq \bigcup p$-conv $\left\{P_{k_{1}}, \ldots, P_{k_{n}}\right\}$ where the union runs over the $\binom{4 n}{n}$ choices of $\left\{P_{k_{i}}\right\}_{i=1}^{n} \subseteq\left\{ \pm e_{i}, \pm P_{i}, 1 \leq i \leq\right.$ $n\}$. Since $\left\|P_{i}\right\|_{2}=1$ and $\mid p$-conv $\left\{P_{k_{1}}, \ldots, P_{k_{n}}\right\} \mid$ is equal to $\left|\operatorname{det}\left[P_{k_{1}}, \ldots, P_{k_{n}}\right]\right|$.
$\mid p$-conv $\left\{e_{1}, \ldots, e_{n}\right\} \mid$, we get $\left|Q_{p}\left(A^{\prime}\right)\right| \leq\binom{ 4 n}{n} \frac{\left|\ell_{n}^{n}\right|}{2^{n}} \leq C_{p}^{n} n^{-n / p} 2^{-n}$ for some constant C_{p} (see [Pi], pg 11). Hence, $\mathbb{P}\left(\Omega\left(A^{\prime}, t\right)\right) \leq\left(C_{p} t n^{1 / 2-1 / p}\right)^{n^{2}}$. If we take a suitable $t>0$, we can assure $\mathbb{P}\left(\Omega\left(A^{\prime}, t\right)\right)<\frac{1}{2}$ and the result follows.

Remark. With straighforward variations in the proof we can state the following result: Given $0<p \leq 1$ and $0<\alpha<1$, there exists a constant $0<C(p, \alpha)<1$ such that for any natural number N we can find two αN-dimensional quotients of ℓ_{p}^{N} having Banach-Mazur distance greater than or equal to $C(p, \alpha) N^{2 / p-1}$.

Remark. Given a p-normed space X and $p<q \leq 1$, we define the q-Banach envelope of X as the q-normed space, X^{q}, whose unit ball es the q-convex envelope of the unit ball of X. It is easy to see that $d\left(X, X^{q}\right) \leq d(X, Y)$ for any n-dimensional q-normed space Y (see $[\mathrm{Pe}],[\mathrm{G}-\mathrm{K}])$. Theorem 1 shows that $d\left(X, X^{q}\right) \leq n^{1 / p-1 / q}$. Indeed, for every $x \in B_{X^{q}},\|x\|_{X^{q}}=1$ there exist $P_{1}, \ldots, P_{n} \in B_{X}$ such that $x=\sum_{i=1}^{n} \lambda_{i} P_{i}$ with $\lambda_{i} \geq 0, \sum_{i=1}^{n} \lambda_{i}^{q} \leq 1$ and $1 \leq\|x\|_{X} \leq \sum_{i=1}^{n} \lambda_{i}^{p}\left\|P_{i}\right\|_{X}^{p} \leq \sum_{i=1}^{n} \lambda_{i}^{p} \leq n^{1 / p-17 q}$; by homogeneity we achieve the result. Now it is easy to see that if X, Y are the spaces appearing in Theorem 2, then $d\left(X, X^{q}\right) \geq C_{p} n^{1 / p-1 / q}, d\left(Y, Y^{q}\right) \geq C_{p} n^{1 / p-1 / q}$ and $d\left(X^{q}, Y^{q}\right) \geq C_{p} n^{2 / q-1}$. In particular, for $q=1, d\left(X, X^{1}\right) \geq C_{p} n^{1 / p-1}, d\left(Y, Y^{1}\right) \geq$ $C_{p} n^{1 / p-1}$ and $d\left(X^{1}, Y^{1}\right) \geq C_{p} n$.

Acknowledgments. The authors are indebted to the referee for showing them the simpler proof of Theorem 1 which notably simplifies a previous one.

References

[Eg] Eggleston, H.G.: Convexity. Cambridge Tracts in Math. and Math. Phys.47. Cambridge University Press (1969).
[Gl] Gluskin, E.D.: The diameter of the Minkowski compactum is approximately equal to n. Functional Anal. and Appl. 15(1), 72-73 (1981).
[G-K] Gordon, Y., Kalton, N.J.: Local structure for quasi-normed spaces. To appear in Bull.Sci.Math.
[Pe] Peck, T.: Banach-Mazur distances and projections on p-convex spaces. Math. Zeits. 177, 132-141 (1981).
[Pi] Pisier G.: The volume of convex bodies and Banach Space Geometry. Cambridge University Press (1989).
[Sz] Szarek, S.J.: Volume estimates and nearly Euclidean decompositions of normed spaces. Séminaire d'Analyse Fonctionnelle École Poly. Paris. Exposé 25. (197980)
[Tmzc] Tomczak-Jaegerman, N.: Banach-Mazur distances and finite-dimensional operator ideals. Pitman Monographs 38 (1989).

[^0]: * Partially supported by Grant DGICYT PS 90-0120
 ** Supported by Grant DGA (Spain)

