The theorems of Caratheodory and Gluskin for 0

by

Jesús Bastero * , Julio Bernués * and Ana Peña **

Departamento de Matemáticas. Facultad de Ciencias Universidad de Zaragoza 50009-Zaragoza (Spain)

Abstract. In this note we prove the *p*-convex analogue of both Caratheodory's convexity theorem and Gluskin's theorem concerning the diameter of Minkowski compactum.

Throughout this note X will denote a real vector space and p will be a real number, $0 . A set <math>A \subseteq X$ is called p-convex if $\lambda x + \mu y \in A$, whenever $x, y \in A$, and $\lambda, \mu \geq 0$, with $\lambda^p + \mu^p = 1$. Given $A \subseteq X$, the p-convex hull of A is defined as the intersection of all p-convex sets that contain A. Such set is denoted by p-conv (A). A (real) p-normed space $(X, \|\cdot\|)$ is a (real) vector space equipped with a quasi-norm such that $\|x + y\|^p \leq \|x\|^p + \|y\|^p, \forall x, y \in X$. The unit ball of a p-normed space is a p-convex set and will be denoted by B_X .

We denote by \mathcal{M}_n^p the class of all *n*-dimensional *p*-normed spaces. If $X, Y \in \mathcal{M}_n^p$ the Banach-Mazur distance d(X, Y) is the infimum of the products $||T|| \cdot ||T^{-1}||$, where the infimum is taken over all the isomorphisms T from X onto Y. We shall use the notation and terminology commonly used in Banach space theory as it appears in [Tmcz].

The problem we are concerned about is an aspect of the local structure of finite dimensional *p*-Banach spaces. The well known theorem of Gluskin gives a sharp lower bound of the diameter of the Minkowski compactum. In [Gl] it is proved that $\operatorname{diam}(\mathcal{M}_n^1) \geq cn$ for some absolute constant *c*. Our purpose is to study this problem in the *p*-convex setting. In [Pe], T. Peck gave an upper bound of the diameter of \mathcal{M}_n^p namely, $\operatorname{diam}(\mathcal{M}_n^p) \leq n^{2/p-1}$. We will show that such bound is optimum (Theorem 2). When proving it, in order to compute some volumetric estimates, it will be necessary to have the corresponding version for p < 1 of Caratheodory's convexity theorem (Theorem 1).

The results of this note are the following:

Theorem 1. Let $A \subseteq \mathbb{R}^n$ and $0 . For every <math>x \in p$ -conv $(A), x \neq 0$ there exist linearly independent vectors $\{P_1 \dots P_k\} \subseteq A$ with $k \leq n$, such that $x \in p$ -conv $\{P_1 \dots P_k\}$. Moreover, if $0 \in p$ -conv (A), there exits $\{P_1 \dots P_k\} \subseteq A$ with $k \leq n + 1$ such that $0 \in p$ -conv $\{P_1 \dots P_k\}$.

and

^{*} Partially supported by Grant DGICYT PS 90-0120

^{**} Supported by Grant DGA (Spain)

Theorem 2. Let $0 . There exits a constant <math>C_p > 0$ such that for every $n \in \mathbb{N}$

$$C_p n^{2/p-1} \le \operatorname{diam}(\mathcal{M}_n^p) \le n^{2/p-1}.$$

Observe that Theorem 1 looks stronger than Caratheodory's one in the sense that we get $k \leq n$ and only $k \leq n + 1$ can be assured for p = 1 (see [Eg], pg 35). It will be clear that this is not such since vector 0 plays a particularly special role.

We begin by recalling the main property of p-convex hulls. It is probably known but since we have not found it in any reference we sketch its proof.

Lemma 1. Let $A \subset X$. The *p*-convex hull of *A* coincides with the set of all finite sums $\sum \lambda_i x_i$ where x_i are taken from *A* (possibly with repetition), $\lambda_i \geq 0$ and $0 < \sum \lambda_i^p \leq 1$.

Proof. Straighforward arguments show that p-conv (A) coincides with the set of all finite sums $\sum \lambda_i x_i, x_i \in A, \lambda_i \geq 0$ and $\sum \lambda_i^p = 1$. Now, we only have to prove that every non zero element x of the form $x = \sum_{i=1}^n \lambda_i x_i, x_i \in A, \sum_{i=1}^n \lambda_i^p < 1$ can be written as $x = \sum_{i=1}^m \mu_i y_i, y_i \in A, \sum_{i=1}^m \mu_i^p = 1$. Suppose $\lambda_1 \neq 0$. Write $\lambda_1 = \sum_{i=1}^k \beta_i$, with $\beta_i \geq 0$. We have $\sum_{i=1}^n \lambda_i^p \leq \sum_{i=1}^k \beta_i^p + \sum_{i=2}^n \lambda_i^p \leq k^{1-p}\lambda_1^p + \sum_{i=2}^n \lambda_i^p$. It is now clear, by a continuity argument, that we can find k and $\beta_i \geq 0, 1 \leq i \leq k$, such that $\lambda_1 = \sum_{i=1}^k \beta_i$ and $\sum_{i=1}^k \beta_i^p + \sum_{i=2}^n \lambda_i^p = 1$. The representation $x = \sum_{i=1}^k \beta_i x_i + \sum_{i=2}^n \lambda_i x_i$ does the job.

Remark. Observe in particular says that for every $0 \neq x \in X$, *p*-conv $\{x\} = (0, x] = \{\lambda x; 0 < \lambda \leq 1\}$. This situation is rather different from the case when p = 1.

Proof of Theorem 1. Let $x \in p$ -conv (A), $x \neq 0$. Let N be the smallest integer so that x in the p-convex hull of a subset $\{P_1, ..., P_N\}$ of A. Consider the set of all $(\alpha_i) \geq 0$ with $x = \sum_{i=1}^N \alpha_i P_i$, $0 < \sum_{i=1}^N \alpha_i^p \leq 1$. Minimize $\sum_{i=1}^N \alpha_i^p$ on this set and denote the optimum by (λ_i) . Clearly $\lambda_i > 0$, for all i = 1, ..., N. Suppose $\{P_1, ..., P_N\}$ are linearly dependent; then there exists nontrivial coefficients (μ_i) so that $\sum_{i=1}^N \mu_i P_i = 0$. If $\delta > 0$ is small enough all the coefficients $\lambda_i + t\mu_i > 0$ and the function $\phi(t) = \sum_{i=1}^N (\lambda_i + t\mu_i)^p$ defined for $t \in (-\delta, \delta)$ has a minimum in t = 0, which contradicts the fact that the second derivative of $\phi(t)$ is negative.

which contradicts the fact that the second derivative of $\phi(t)$ is negative. If $0 \in p$ -conv (A) then $0 = \sum_{i=1}^{N} \lambda_i P_i$, $P_i \in A$, $\lambda_i > 0$, $\forall i$ and $\sum_{i=1}^{N} \lambda_i^p = 1$. We can suppose $P_1 \dots P_m$ linearly independent with $m \leq n$. We consider $\sum_{i=1}^{m+1} \lambda_i P_i = -\sum_{i=m+2}^{N} \lambda_i P_i$. If we apply the first part of the proof to $\tilde{x} = \sum_{i=1}^{m+1} \lambda_i s^{-1} P_i$, $s^p = \sum_{i=1}^{m+1} \lambda_i^p$ we obtain $\sum_{i=1}^{m} \beta_i P_i = -\sum_{i=m+2}^{N} \lambda_i P_i$, with $\sum_{i=1}^{m} \beta_i^p \leq 1$. Hence $0 \in p$ -convex envelope of N-1 points. Repeat the argument until reaching a representation of length $\leq n + 1$.

Next we are going to prove Theorem 2. The proof follows Gluskin's original ideas. We first introduce some notation. S^{n-1} will denote the euclidean sphere in \mathbb{R}^n with its normalized Haar measure μ_{n-1} and Ω will be the product space $S^{n-1} \times \stackrel{n}{\ldots} \times S^{n-1}$ endowed with the product probability \mathbb{P} . If $K \subseteq \mathbb{R}^n$, |K| is the Lebesgue measure of K. If $A = (P_1, \ldots, P_n) \subset \Omega$, we write $Q_p(A) = p$ -conv $\{\pm e_i, \pm P_i \mid 1 \le i \le n\}$, being $\{e_i\}_{i=1}^n$ the canonical basis of \mathbb{R}^n . We denote by $\|\cdot\|_{Q_p(A)}$ the *p*-norm in \mathbb{R}^n whose unit ball is $Q_p(A)$.

We only need to prove that for some absolute constant $C_p > 0$, there exist $A, A' \in \Omega$ such that simultaneously both $||T||_{Q_p(A) \to Q_p(A')} \geq C_p n^{1/p-1/2}$ and $||T^{-1}||_{Q_p(A')\to Q_p(A)} \geq C_p n^{1/p-1/2}$ hold for any $T\in \mathrm{SL}(n)$ (that is, any linear isomorphism in \mathbb{R}^n with det T = 1).

Straightforward argument shows that it is enough to see that for any $A' \in \Omega$,
$$\begin{split} I\!\!P\{A \in \Omega \mid \|T\|_{Q_p(A) \to Q_p(A')} < C_p n^{1/p-1/2} \text{ for some } T \in \mathrm{SL}(n) \} < \frac{1}{2}. \\ \mathrm{Fix } A' \in \Omega, \ t > 0, \text{ and write } \Omega(A', t) = \{A \in \Omega \mid \|T\|_{Q_p(A) \to Q_p(A')} < C_p n^{1/p-1/2} \} \end{split}$$

t for some $T \in SL(n)$.

The proof of the following lemma is analogous to the one in the case p = 1 (see [Tmcz], §38).

Lemma 2. Let $A' \in \Omega$ and t > 0.

i) There exists a t^p -net N(A', t) in $\{T \in SL(n) \mid ||T||_{\ell_n^n \to Q_p(A')} \leq t\}$ with respect to the metric induced by $\|\cdot\|_{\ell_2^n \to Q_p(A')}^p$ of cardinality

$$|N(A',t)| \le (3^{1/p} n^{1/p-1/2})^{n^2} \frac{|Q_p(A')|^n}{|\{T \in \mathrm{SL}(n) \mid ||T||_{\ell_2^n \to \ell_2^n} \le 1\}|}$$

ii)

$$\Omega(A',t) \subseteq \bigcup_{T \in N(A',t)} \{ A \in \Omega \mid \|T(P_i)\|_{Q_p(A')} \le 2^{1/p} t, \forall P_i \in A \}$$

iii) Given $T \in SL(n)$,

$$I\!\!P\{A \in \Omega \mid ||T(P_i)||_{Q_p(A')} \le 2^{1/p}t, \forall P_i \in A\} \le (2^{1/p}t)^{n^2} \left(\frac{|Q_p(A')|}{|B_{\ell_2^n}|}\right)^n$$

Proof of Theorem 2: Numerical constants are always denoted by the same letters C(or C_p , if it depends only on p) although they may have different value from line to line. Using consecutively the three preceding lemmas we have for every $A' \in \Omega$ and t > 0,

$$I\!\!P\big(\Omega(A',t)\big) \le (C_p t n^{1/p-1/2})^{n^2} \frac{|Q_p(A')|^{2n}}{|B_{\ell_2^n}|^n \cdot |\{T \in \mathrm{SL}(n) \mid ||T||_{\ell_2^n \to \ell_2^n} \le 1\}|$$

It is well known that for some absolute constant C > 0, (see [Tmcz]), we have $|\{T \in SL(n) \mid ||T||_{\ell_2^n \to \ell_2^n} \le 1\}| \ge C^{n^2} |B_{\ell_2^n}|^n.$

Let $A' = \{P_1, \ldots, P_n\}$. By Theorem 1, $Q_p(A') \subseteq \bigcup p$ -conv $\{P_{k_1}, \ldots, P_{k_n}\}$ where the union runs over the $\binom{4n}{n}$ choices of $\{P_{k_i}\}_{i=1}^n \subseteq \{\pm e_i, \pm P_i, 1 \leq i \leq n\}$. Since $\|P_i\|_2 = 1$ and |p-conv $\{P_{k_1}, \ldots, P_{k_n}\}|$ is equal to $|\det [P_{k_1}, \ldots, P_{k_n}]|$. $|p\text{-conv} \{e_1, \dots, e_n\}|$, we get $|Q_p(A')| \leq {\binom{4n}{n}} \frac{|B_{\ell_p^n}|}{2^n} \leq C_p^n n^{-n/p} 2^{-n}$ for some constant C_p (see [Pi], pg 11). Hence, $I\!\!P(\Omega(A',t)) \leq (C_p t n^{1/2-1/p})^{n^2}$. If we take a suitable t > 0, we can assure $I\!\!P(\Omega(A',t)) < \frac{1}{2}$ and the result follows. ///

Remark. With straighforward variations in the proof we can state the following result: Given $0 and <math>0 < \alpha < 1$, there exists a constant $0 < C(p, \alpha) < 1$ such that for any natural number N we can find two αN -dimensional quotients of ℓ_p^N having Banach-Mazur distance greater than or equal to $C(p, \alpha)N^{2/p-1}$.

Remark. Given a *p*-normed space X and $p < q \leq 1$, we define the *q*-Banach envelope of X as the *q*-normed space, X^q , whose unit ball es the *q*-convex envelope of the unit ball of X. It is easy to see that $d(X, X^q) \leq d(X, Y)$ for any *n*-dimensional *q*-normed space Y (see [Pe],[G-K]). Theorem 1 shows that $d(X, X^q) \leq n^{1/p-1/q}$. Indeed, for every $x \in B_{X^q}, \|x\|_{X^q} = 1$ there exist $P_1, \ldots, P_n \in B_X$ such that $x = \sum_{i=1}^n \lambda_i P_i$ with $\lambda_i \geq 0, \sum_{i=1}^n \lambda_i^q \leq 1$ and $1 \leq \|x\|_X \leq \sum_{i=1}^n \lambda_i^p \|P_i\|_X^p \leq \sum_{i=1}^n \lambda_i^p \leq n^{1/p-1/q}$; by homogeneity we achieve the result. Now it is easy to see that if X, Y are the spaces appearing in Theorem 2, then $d(X, X^q) \geq C_p n^{1/p-1/q}, d(Y, Y^q) \geq C_p n^{1/p-1/q}$ and $d(X^q, Y^q) \geq C_p n^{2/q-1}$. In particular, for q = 1, $d(X, X^1) \geq C_p n^{1/p-1}$, $d(Y, Y^1) \geq C_p n^{1/p-1}$ and $d(X^1, Y^1) \geq C_p n$.

Acknowledgments. The authors are indebted to the referee for showing them the simpler proof of Theorem 1 which notably simplifies a previous one.

References

- [Eg] Eggleston, H.G.: Convexity. Cambridge Tracts in Math. and Math. Phys.47. Cambridge University Press (1969).
- [GI] Gluskin, E.D.: The diameter of the Minkowski compactum is approximately equal to *n*. Functional Anal. and Appl. **15**(1), 72-73 (1981).
- [G-K] Gordon, Y., Kalton, N.J.: Local structure for quasi-normed spaces. To appear in Bull.Sci.Math.
 - [Pe] Peck, T.: Banach-Mazur distances and projections on p-convex spaces. Math. Zeits. 177, 132-141 (1981).
 - [Pi] Pisier G.: The volume of convex bodies and Banach Space Geometry. Cambridge University Press (1989).
 - [Sz] Szarek, S.J.: Volume estimates and nearly Euclidean decompositions of normed spaces. Séminaire d'Analyse Fonctionnelle École Poly. Paris. Exposé 25. (1979-80)
- [Tmzc] Tomczak-Jaegerman, N.: Banach-Mazur distances and finite-dimensional operator ideals. Pitman Monographs 38 (1989).