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1. Introduction

A major problem in Asymptotic Geometric Analysis (the branch of modern Functional Anal-
ysis, coming from the interaction between local theory of Banach spaces, classical convex
geometry and probability) is the so called Slicing Problem or Hyperplane Conjecture.

The statement has a number of equivalent forms. A well known formulation has its roots
in classical mechanics. It is based on the fact that for every convex body K (compact, convex
set in R” with non empty interior) there exists a unique ellipsoid £(K) which has the same
moments of inertia as K with respect to every axis (the so called Legendre ellipsoid of K,
see [9]). In this framework the problem can be formulated as does there exist a universal
constant ¢ > 0 such that for all n € N and all convex bodies K C R" of volume 1 one has that
the volume of L(K) is bounded from above by c?

Nowadays, we are very far from solving the Slicing Problem. The best general upper
bound is ¢n'/? (due to Klartag, see [6]) improving an earlier bound by Bourgain cn'/?log® n
([2], [13]). On the other hand, the Slicing Problem is known to have a positive answer for
many classes of convex bodies (see for instance [9]).

For K of volume 1, the volume of £(K) is equivalent, up to an absolute constant, to L%,
the isotropy constant associated to K (see definition below). So it is more common to present
the Slicing Problem as does there exist a universal constant ¢ > 0 such that for all n € N and
all convex bodies K C R" one has that Ly is bounded from above by c? (The name Slicing
Problem arises from geometry and is due to another equivalent version is there an absolute
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constant ¢ > 0 such that for every dimension n, every convex body K in R" of volume 1 has a
hyperplane section (slice) with volume greater than c?)

Consider the unit ball of the £, space, 1 < p < oo, denoted by B),. For p finite this
is B, = {x e R" | 2y [P < 1}, M. Junge [4] proved that the isotropy constants of all
orthogonal projections (of any dimension) of B, 1 < p < co are bounded by cpr, (p’ is the
conjugate exponent of p, i.e. + + [% = 1). See also [8] for a different proof of this fact and
[5] for further generalizations. Notice that, as p approaches 1, the constant cps explodes.

Our aim is to improve this bound, for hyperplane projections of B, to a numerical con-
stant independent of p (Theorem 2.1) and moreover extend it to the limiting case p = 1
(Theorem 2.2).

We will use the following notation: m,, (resp. m,_;) will denote the n dimensional (resp.
n — 1 dimensional) Hausdorff measure on R". We choose the normalization so that m,, coin-
cides with the Lebesgue measure on R". The measure of a set will be denoted by | - |, (resp.
|-]n=1). For a hyperplane H C R”", Py is the orthogonal projection onto H. The letters C, ¢, c’...
will denote numerical constants whose value may change from line to line. The rest of the
notation is standard as it appears in [12].

2. The results

The starting point in the proof of the theorems is the following formula, which serves us as a
definition for the isotropy constant of a convex body K, see [9]:

1 1
nL%:inf{W . K] f I)cl2 dm,(x); a € R", T € GL(n),det(T) = 1} (1)
n n Ja+TK

Theorem 2.1. There exists a universal constant ¢ > 0 such that for every hyperplane H of
R*and 1 < p < oo,
Lpymy < ¢

Proof. The case 2 < p < co follows by the result of M. Junge [4] since pr < 2. We will

assume 1 < p <2.Let H = {x e R";(x,60) = 0} with6 € §"".
In view of the representation (1) we have

1 1 f 2
|x|”dmy— (x)
|PH(B’;,)|i/_(;’_]) 1Pr(Bpln-1 Jpyar) "
Thus, we need to estimate |Py(B)),-1 from below and the remaining integral from above.

The following inequality is well known |By|, < |Pu(B})l.-1 K6) N Bpli (see Lemma 8.8 in
[12]) where [{(6) N B;Il is a segment length. Since p < 2, clearly [(6) N Ble <1 and so

2
(n— l)LPH(B;) <

1B,ln < |Pr(B))lh-1

_2'@d+1/py"

Thus, by the well known formula |B)|, = and Stirling’s estimate we have
4 ' +n/p)

ny 2/ (n—1) n(2/(n—1) c
PR BES™ > B > —
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It remains to bound |x|>dm,,_ (x) from above. For that matter, we will

i,
\Pr(Bp)ln-1 JpyBy)
use the method developed in [3]. We will denote by o, the normalized area measure on 9B,
and by u, the cone probability measure on 0By, defined by

{ta;a e A,0 <t < 1},

Hp(A) = .
P |B5n
whenever A C (937,. It was proved in [11] that
do™” n|B"|,
P P
(x) = V([ - l1p)(x)
a = gy 70 )

for almost every point x € dB’, where V denotes the gradient (of the norm). For any (say)
bounded measurable function f defined on PH(BZ) we have, by Cauchy’s formula

1
f )1 (2) = 0B f FPaWN@). O)lde ()
Pu(BY) B,
(N(y) is the unit normal vector to 6B;’,)

= E|BZ|,,[ F@a)IKVAl - 1)), O)ldi,(y)
2 o8]

n

n — n

=5 [ feun | i senv o)
B), i=1
And in particular for f(y) = lyl?,
}’l n
Ix*dm,_1 (x) < <|B, f Wyl | > Iyl sgny6| dui(y)
»fPH(B}’,) 2°F 2:7 ; !

In order to compute this integral we use a concrete probabilistic description of ), (see, for
instance, [15], [3], [11], [10]).

Let g be a random variable with density e /(2I'(1 + 1/p)), t € R. For gi,...,g, ii.d.

1
copies of g we define § = (Z?:l |9i|p) .

Then the random vector (g1/S,...,9,/S) € 832 is independent of S and is distributed on
aB;’, according to the cone measure ,uZ (see [14] and [15]).
Hence, by applying Cauchy’s formula with f(y) = 1 and this representation

2

n gl
E Zi:] S2

1 Yict l?;':: Sgn(gi)ei'

—_— x> dm,_1 (x) < —
|PH(BZ)|}1—1 »fPH(B;‘,) E ’27:1 |?|+]l Sgn(gi)gi‘

= (by independence)
_ Es¥! Z Elgil? | 19"~ sen(g:)6]
ESPel o E[3L lgilr! sgn(g))]
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We estimate the first fraction,

n (p=D/p
ESP ' =E (Z |g[|P] < (by Holder’s inequality)
i=1

n (p-D/p n (p—-D)/p
< (EZ Igflf’) = (—)
i=1 p

since E|g|? = 1/p and

n
BT = E(Z lgil”
i=1
n (p+1)/p n (p+1)/p
> (EZ Igil"] = (—)
i=1 p

(p+D/p
) > (by Holder’s inequality)

therefore
ES p-1 p2/p c
<—=—<
ESp+1 n2/p n2lp
On the other hand, let (¢y, ..., &,) a vector sequence of i.i.d random =1 signs, independent
of (g1,...,9,). Itis clear that for any value of (g1, ...,&,)
n n
Ey Z leigilP~! sgn(gie))6i| = E Z lgil”~" sgn(g,)6;| .,
i=1 i=1
)

E

Z lgil”~" sgn(g;)6;| = E,E, Z leigil” ™" sgn(gie)6;
i=1 i=1

> (by Khinchine’s inequality, see[12])

n 1/2
>CEy| ) |gi|2P—293]
i=1

> (by Jensen’s inequality)

>CE ) lgl’'¢?=CElgl"'>C>0

n

i=1

whenever 1 < p < 2since Y, 67 = 1.

With an analogous argument we have
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n

Dl sgn(gne;

i=1

n

Z lgieil”™" sgn(gie))6;
P

Elg; = EE,lgi &1

= Eylg1 "B Z lgieil” ™" sgn(gie:)6;
i=1
> (by Khinchine’s inequality)
n 1/2
<CElgiP| ), Igilz’”@?]
i=1

< (by Jensen’s inequality)

n 1/2
<C (EW > |gi|2P-29?]

i=1

n 1/2
-C (Z E|g1|4|gi|2”_29,-2] >C>0
i=1

Therefore z": Elgil* |Z?:] lgilP~! Sgn(g,-)gi| —en
TS E|ZL lgidr! sen(g)6]

Collecting the estimates together we have thus proved

2/p
cn“'Pn
Ix|*dmy_1(x) < —— = Cn

2 2
(n— I)LPH(B;) <cn il

/p; f

\Pr(Bp)ln-1 Jpy By
and the result follows. O
Theorem 2.2. There exists a universal constant ¢ > 0 such that for every hyperplane H C R",
LPH(B';) <c

Proof. Let H = {x € R";{x,6) = 0} with § € §"~!. Let {F;,i € I} be the faces of B and v; the
normal vector of F;, i € I. First, suppose (0, v;) # 0,V i € I.
From the representation (1) we have

] ] f 2
e |x|” dmiy—1(x)
B, PHBDht Sy

n—1

(n=1Lp, g <

As in the case 1 < p < 2, we first need to estimate |Py(BY)|,-1 from below. Lemma 8.8
in [12] states
[BYln < [Pr(BDlu-1 KO) N Bili < [Py(B))ln-1

n . . . L
The equality |BY|, = % and Stirling’s formula yield |Pg(B))|'", = c/n.
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On the other hand, let us denote by I" (resp. I7) the set of i’s for which (6, v;) > 0 (resp.
< 0). The following disjoint decomposition, up to a set of (n — 1)-dimensional Hausdorff
measure zero, holds

Pu(BY) =) PuFy) = || Pu(F)
iel* iel~

and moreover, for every (say) bounded measurable function f: Py(B}) — R

1
f fOydm (=353 | 00 dmye ()
P (BY) icl Y Pu(Fi)
In particular,
2APH(BD1 = ) IPH(F)l

iel
and
g | dma =Y, e [ P,
n— - n—
IPr(BDl-1 Jpya)  |\PH(BDln-1 Jpycr)

3 | H( 1)‘n—l
If we write @; = 21‘ PH(JB’II)Infl we have a; > 0, E, a; = 1 and
1€

1 f 2 a; 2
—_— |x[“dmy,—1(x) = —f |x|“dm,,—1 (x)
IPr(BDl-1 Jpyan) ; [Pa(F)la-1 JpyrF)

Since the latter formula is a convex combination, we have

1 f 2 1 2
—_— |x[*dm,,_1(x) < sup —f |x|“dm,,—1 (x)
IPe(BDl-1 Jpysn) iel |PE(FDIn-1 Jpyr)

Each face F; is of the form conv{+ey,..., xe,} for some choice of signs + so all we need
is to have a bound from above of

1 f 2
_ [x*dmy,—1 (x).
PrAet Jpyay
where A, is the canonical simplex in R", i.e. A" = conviey,...,e,}

Write v = (1/4/n,...,1/+/n) the normal vector to A". In order to change variables in
the integral above we need to show that Py : A, — Pg(A,) is a diffeomorphism. Indeed,
if x,x € A" such that Py(x) = Py(X), then x — X = (x — X,0)6. Since x,x € A" we have
0 =(x - Xx,60)(0,v) and, since (v,0) # 0, (x,0) = (X, 8) which implies x = *.

The modulus of the jacobian is [{4, V)|, so |Pg(A™)],-1 = [0, V)||A"|,-1 and

1 1
L P (x) = f PP ()
Pr(A fp,,w) = A, J, Y v
1

lyl*dm,.—1 (y)
Ay fA Y1ty

<

Now, it is well known (see for instance [7]) that

2
dm,_\(y) =
A S lyl“dm,-1(y) P
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2 2 2
Therefore, we have seen (n — 1)LPH(B,11) S onty
constant ¢ > 0. Now, by a continuity argument, we can eliminate the restriction on € which

finishes the proof.

and so Lp,pn < ¢ for some absolute

O

3. Conclusion

In this paper we added all hyperplane projections of B}, 1 < p < oo, to the list of convex
bodies for which the Slicing Problem has a positive solution (Theorems 2.1 and 2.2).

In a forthcoming paper [1], the authors extend this approach to lower dimensional projec-
tions in the case p = 1. Indeed, for any k-dimensional subspace E C R, it is possible to show
that Lp, g < ¢ \/% . We believe that the probabilistic tools we introduced here for p > 1 will
produce a similar result.
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