
HIGH DIMENSIONAL RANDOM SECTIONS OF
ISOTROPIC CONVEX BODIES
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Abstract. We study two properties of random high dimensional sec-
tions of convex bodies. In the first part of the paper we estimate the

central section function |K ∩F⊥|1/kn−k for random F ∈ Gn,k and K ⊂ Rn
a centrally symmetric isotropic convex body. This partially answers a
question raised by V. Milman and A. Pajor (see [MP], p.88). In the sec-
ond part we show that every symmetric convex body has random high
dimensional sections F ∈ Gn,k with outer volume ratio bounded by

ovr(K ∩ F ) ≤ C
n

n− k
log

„
1 +

n

n− k

«

1. Introduction and notation

Throughout the paper K ⊂ Rn will denote a symmetric convex body. K
is called isotropic if it is of volume 1 and its inertia matrix is a multiple of
the identity. Equivalently, there exists a constant LK > 0 called isotropy
constant of K such that L2

K =
∫
K〈x, θ〉

2 dx, ∀θ ∈ Sn−1.
The relation between the isotropy constant and the size of the central

sections of an isotropic convex bodies appears in [H], [B] or [MP] where it
is proved that for every 1 ≤ k ≤ n there exist c1(k), c2(k) > 0 such that for
every subspace F ∈ Gn,k (the Grassmann space) and K ⊂ Rn isotropic

c1(k)
LK

≤ |K ∩ F⊥|1/kn−k ≤
c2(k)
LK

where | · |m is the Lebesgue measure in the appropiate m dimensional space.
More precisely, it is proved in [MP] that |K ∩ F⊥|1/kn−k ∼ LBk+1(K,F )/LK ,

see Lemma 2.2 below for an explanation (a ∼ b means a · c1 ≤ b ≤ a · c2 for
some numerical constans c1, c2 > 0). From now on the letters c, C, c1... will
denote absolute numerical constants, whose value may change from line to
line. Well known estimates imply c1(k) ≥ c1, [H], and c2(k) ≤ c2k

1/4, [Kl1].
We remark that these bounds are valid for every subspace F ∈ Gn,k.
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Our first main result of the paper is an improvement of this general result
for “most” subspaces. Denoting by µ the Haar probability on Gn,k we show
Theorem 2.1 There exist absolute constants c1, c2, c3 > 0 with the following
property: If K is an isotropic convex body in Rn and 1 6 k 6

√
n then

µ{F ∈ Gn,k :
c1

LK
6 |K ∩ F⊥|1/kn−k 6

c2

LK
} ≥ 1− e−c3

n
k

The proof uses the tools developed in [Pa1].
Our first motivation for the second part of the paper was to give upper

bounds for the isotropy constant LK∩F of high dimensional random sections
of K. For that matter, we estimate the volume ratio (see definition below)
of projections of convex bodies vr(PE(K)). By a straigforward duality ar-
gument that is equivalent to having an estimate for the outer volume ratio
of sections which is known to control their isotropy constant.

The notion of volume ratio was introduced by S. Szarek in the seventies,
cf. [S], in the context of the local theory of normed spaces. As a consequence
of John’s theorem, the volume ratio of K is bounded from above by

√
n and

the bound is sharp up to a constant.
One of the main well known consequences of the M -position is the fact

that random proportional projections of K (in M -position) have bounded
volume ratio, see for instance [M2], [M3] or [P] Chapter 6, and references
therein. In view of the applications, the stress is put in the key fact of being
proportional and the general bound available is

vr(PE(K)) ≤ C
n
k

+ n
n−k

for random E ∈ Gn,k with probability greater than 1 − e−n. See also [Kl2]
for a proof of this fact for non necessarily symmetric convex bodies in M -
position. We should also mention [GM] on estimates of the diameter of
random proportional sections, which also give upper bounds on the isotropy
constant of proportional sections.

We will give estimates of the volume ratio vr(PE(K)) which yield non-
trivial bounds even when the dimension k may be greater than proportional.
More precisely, we will show
Theorem 3.2 For every symmetric convex body K in Rnand any 1 ≤ k ≤
n− 1 there exists an F ∈ Gn,k such that

vr(PF (K)) ≤ c
(

n

n− k

) 1
2

log
(

1 +
n

n− k

)
where c > 0 is a universal constant.

The methods of random matrices appearing in [LPTJ] will enable us to
prove the random version
Theorem 3.3 Let K be a centrally symmetric convex body in Rn. For any
k ≥ n

2 there exists a position of K such that the subset of Gn,k of subspaces
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E satisfying

vr(PE(K)) ≤ C n

n− k
log
(

1 +
n

n− k

)
has Haar probability larger than 1− 2e−

n−k
2 .

In particular, our results imply the existence of one, respectively, random
orthogonal sections of a convex body in M -position having the isotropy
constant bounded by the bounds above, see Corollary 3.4.

We introduce some notation. We denote by | · | the Euclidean norm in
the appropiate space, Dn the Euclidean ball in Rn and by ωn its Lebesgue
measure. The surface area of the unit sphere is |Sn−1| = n ωn. For any
k-dimensional subspace F ⊂ Rn we denote SF = Sn−1 ∩ F , the Haar
probability on SF by σF , DF = Dn ∩ F and by PF the orthogonal pro-
jection onto F . The Haar probability on the grassmaniann Gn,k is denoted
by µ. K◦ = {x ∈ Rn; 〈x, y〉 ≤ 1} denotes the polar body of K. For
any convex body L ⊂ Rn we will write L̃ = L/|L|1/nn . We will denote
W (K) :=

∫
Sn−1 hK(θ)dσ(θ), the mean width of the convex body K.

2. Improvement of the constants via random sections

Theorem 2.1. There exist absolute constants c1, c2, c3 > 0 with the fol-
lowing property: If K is an isotropic convex body in Rn and 1 6 k 6

√
n

then

(2.1) µ{F ∈ Gn,k :
c1

LK
6 |K ∩ F⊥|1/kn−k 6

c2

LK
} ≥ 1− e−c3

n
k

Through the section K will be (a symmetric convex body) of volume 1.
Let F be a k-dimensional subspace of Rn and denote by E the orthogonal
subspace of F . For every φ ∈ SF we define E(φ) = span{E, φ}.
K. Ball (see [B]) proved the following theorem: For every q > 0 and φ ∈ F ,
the function

φ 7→ |φ|1+ q
q+1

(∫
K∩E(φ)

|〈x, φ〉|qdx

)− 1
q+1

is a norm on F . We denote by Bq(K,F ) the unit ball of this norm.
Under this notation it was proved in [MP] the following

Lemma 2.2. If K is isotropic then Bk+1(K,F ) is also isotropic for every
F ∈ Gn,k, and

(2.2) |K ∩ F⊥|1/kn−k ∼
LBk+1(K,F )

LK
∀ F ∈ Gn,k

A generalization for Lq centroid bodies of this approach appeared in [Pa1].
For any q ≥ 1 we define the Lq centroid body of K, the symmetric convex
body that has support function

hZq(K)(z) :=
(∫

K
|〈x, z〉|qdx

)1/q

, ∀z ∈ Sn−1



4 D. ALONSO, J. BASTERO, J. BERNUÉS, AND G. PAOURIS

The following equality was proved in [Pa1]: For every 1 6 k 6 n − 1,
F ∈ Gn,k and q ≥ 1,

(2.3) PF (Zq(K)) =
(
k + q

2

)1/q

|Bk+q−1(K,F )|1/k+1/q
k Zq(B̃k+q−1(K,F ))

Proposition 2.3. Let K ⊂ Rn, 1 6 k 6 n − 1, F ∈ Gn,k and E = F⊥.
Then

c1 6 |PFZk(K)|1/kk |K ∩ E|
1/k
n−k 6 c2

where c1, c2 > 0 are universal constants.

Proof. We choose q = k in (2.3). Then by taking volumes we have that

|PF (Zk(K))|1/kk = k1/k|B2k−1(K,F )|2/kk |Zk(B̃2k−1(K,F ))|1/kk

It is known that there exists a universal constant c > 0 such that for any
symmetric convex body K of volume 1 in Rk and q ≥ k, cK ⊆ Zq(K) ⊆ K.
(see [Pa2] So,

c 6 |Zk(B̃2k−1(K,F ))|1/kk 6 1.
So, it is enough to prove that there exists c > 0 such that

(2.4)
1

|K ∩ E|1/kn−k

6 k1/k|B2k−1(K,F )|
2
k
k 6 c

1

|K ∩ E|1/kn−k

The right hand side inequality was proved in [Pa1]. The left hand side
inequality follows the same line. We will need the following fact (see [MP]
for a proof):

Let C be a symmetric convex body in Rm. If s 6 r are non-negative
integers and θ ∈ Sm−1, we have that

(2.5)
(
r + 1

2

∫
C |〈x, θ〉|

rdx

|C ∩ θ⊥|m−1

)1/(r+1)

>

(
s+ 1

2

∫
C |〈x, θ〉|

sdx

|C ∩ θ⊥|m−1

)1/(s+1)

Writing in polar coordinates we get

(2.6) |B2k−1(K,F )|k = ωk

∫
SF

(∫
K∩E(φ)

|〈x, φ〉|2k−1dx

) 1
2

dσF (φ)

Applying (2.5) with C = K ∩ E(φ), m = n − k + 1, r = 2k − 1 and
s = k − 1, we get(

k

∫
K∩E(φ) |〈x, φ〉|

2k−1dx

|K ∩ E|n−k

)1/(2k)

>

(
k

2

∫
K∩E(φ) |〈x, φ〉|

k−1dx

|K ∩ E|n−k

)1/k

It follows that(∫
K∩E(φ)

|〈x, φ〉|2k−1dx

) 1
2

> (k|K ∩ E|n−k)−1/2k

2

∫
K∩E(φ)

|〈x, φ〉|k−1dx
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Then formula (2.6) becomes

|B2k−1(K,F )|k > (k|K ∩ E|n−k)−1/2 k

2
ωk

∫
SF

∫
K∩E(φ)

|〈x, φ〉|k−1dxdσF (φ)

Observe that (see also [Pa1])

|K|n =
kωk

2

∫
SF

∫
K∩E(φ)

|〈x, φ〉|k−1dx dσF (φ).

So we get |B2k−1(K,F )|k >
1
k1/2
|K ∩ E|−1/2

n−k , that is

k1/k|B2k−1(K,F )|2/kk >
1

|K ∩ E|1/kn−k

That proves formula (2.4) and the Proposition. 2

We will use the isomorphic version of Dvoretzky theorem proved by V.
Milman (see [M1] , [MS]):

Proposition 2.4. Let C a symmetric convex body in Rn. If k 6 c1n
(W (C)
R(C)

)2
(2.7)

µ{F ∈ Gn,k :
W (C)

2
DF ⊆ PF (C) ⊆ 2W (C)DF } ≥ 1− exp−c2n

(W (C)
R(C)

)2

where c1, c2 > 0 are universal constants, R(C) = max{|x| ; x ∈ C} and
W (C) =

∫
Sn−1 hC(θ) dσ(θ)

We will denote k∗(C◦) := n
(
W (C)
R(C)

)2
. Furthermore, (see [LMS]) we have

that for p 6 k∗(C◦),

(2.8) W (C) ∼Wp(C) :=
(∫

Sn−1

hpC(θ)dσ(θ)
)1/p

Definition 2.5. Let K be a symmetric convex body of volume 1 in Rn and
let α ∈ [1, 2]. We say that K is a ψα-body with constant bα if(∫

K
|〈x, θ〉|qdx

)1/q

6 bαq
1/α

(∫
K
|〈x, θ〉|2dx

)1/2

for all q > α and all θ ∈ Sn−1. Equivalently, if

Zq(K) ⊆ bαq1/αZ2(K) for all q > α

The following definition appeared in [Pa3]:

Definition 2.6. Let K be a symmetric convex body of volume 1 in Rn. We
define

q∗(K) = max{q ∈ N : k∗(Z◦q (K)) > q}
where Z◦q (K) := (Zq(K))◦.

We will need the following lower bounds for the quantities k∗(Z◦q (K)) and
q∗(K), (see [Pa1]):
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Proposition 2.7. Let K be an isotropic ψα-body with constant bα and 1 6
q 6 n then

k∗(Z◦q (K)) ≥ c1
n

q
2−α
α b2α

and q∗(K) > c2

(√
n

bα

)α
Proposition 2.8. Let K ⊂ Rn be isotropic. Then for q 6 q∗(K) we have

(2.9) W (Zq(K)) ∼ √qLK
Proof. A direct computation shows that for q 6 n,(∫

K
|x|qdx

)1/q

∼
√
n

q
Wq(Zq(K))

It was proved in [Pa1] that for every q 6 q∗(K) we have(∫
K
|x|qdx

)1/q

∼
√
nLK

Also by (2.8) and the definition of q∗(K) we have that

W (Zq(K)) ∼Wq(Zq(K)) ∀ q 6 q∗(K)

By putting these results together we conclude the proof.
2

A well known application of Brunn-Minkowski inequality implies that every
convex body is ψ1 body with a constant c, where c is universal. So, Theorem
2.1 is a direct consequence of the following:

Theorem 2.9. Let K be an isotropic ψα-body with constant bα and 1 6 k 6
c
(√

n
bα

)α
. Then

µ{F ∈ Gn,k :
c1

LK
6 |K ∩ F⊥|1/kn−k 6

c2

LK
} ≥ 1− exp{−c3

n

k
2−α
α b2α

}

Proof. Let 1 6 k 6 q∗(K). We will apply Proposition 2.4 for the symmetric
convex body Zk(K). So, we have that there exists an A ⊆ Gn,k of measure
greater that 1− ec2k∗(Z◦k(K)) such that for every F ∈ A

W (Zk(K))
2

DF ⊆ PF (Zk(K)) ⊆ 2W (Zk(K))DF

By taking volumes we get

|PF (Zk(K))|1/kk ∼ W (Zk(K))√
k

∼ LK

where we used Proposition 2.8 and the fact that |Dk|
1/k
k ∼ 1√

k
.

By Proposition 2.3 we get that for every F ∈ A,
c1

LK
6 |K ∩ E|1/kn−k 6

c2

LK
The result follows by Proposition 2.7.
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2

Remark 2.10. By using a very recent version of the central limit theorem
for convex bodies by R. Eldan and B. Klartag, [EK] one can deduce:

Let K be an isotropic convex body in Rn and 1 ≤ k ≤ nc. Then there
exists a subset E ⊂ Gn,k with µ(E) ≥ 1 − C exp(−nc′) such that for any
F ∈ E we have

1− ε√
2πLK

≤ |K ∩ F⊥|1/kn−k ≤
1 + ε√
2πLK

whenever 0 < ε ∼ 1
nc′′

.
This result is different from Theorem 2.1. It produces optimal constants

c1(k), c2(k), but Theorem 2.1 is valid for k ≤
√
n (while c is very small).

For smaller values of k, namely 1 ≤ k ≤ ε logn
(log logn)2

, a simplified proof of the
R. Eldan and B. Klartag theorem can be given. Indeed, it is possible esti-
mate the Lipschitz constant of the section function Gn,k 3 E → |E⊥∩K|n−k
and use the concentration of measure phenomenon on the Grassmannian to
measure the closeness of this function with respect to its mean. Then, by
expressing this expectation as a marginal, one relates it to the marginal of
the gaussian distribution and use the concentration of |·| on K in the version
stated in [BB] (Theorems 3.5 and Corollary 3.6). We omit the details.

3. The isotropy constant of high dimensional sections

In this section we give upper bounds for the isotropy constant of high
dimensional sections of convex bodies by giving upper bounds for the volume
ratio of high dimensional projections. First of all let us recall some very well
known facts.

Definition 3.1. Let K ⊆ Rn be a convex body. The volume ratio and outer
volume ratio of K are defined as

vr(K) = inf
(
|K|
|E|

) 1
n

and ovr(K) = inf
(
|E ′|
|K|

) 1
n

where E runs over all the ellipsoids contained in K and E ′ runs over all the
ellipsoids containing K.

The volume ratio of any centrally symmetric convex body is equivalent
to the outer volume ratio of its dual, since if E is the maximum volume
ellipsoid contained in K, then

vr(K)
ovr(K◦)

=
(
|K||K◦|
|E||E◦|

) 1
n

and by Blaschke-Santaló inequality and its reverse there exists an absolute
constant c such that

c ovr(K◦) ≤ vr(K) ≤ ovr(K◦).
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Recall the identity K◦ ∩ F = (PF (K))◦, F ∈ Gn,k. Thus, by the previous
formula we have

ovr(K◦ ∩ F ) ∼ vr(PF (K))

It is also easy to prove that outer volume ratio bounds the isotropy con-
stant of any convex body. The argument is,

nL2
K ≤ inf

TK⊆Dn

1

|TK|
2
n

∫
K
|Ty|2 dy

|K|
≤ inf

TK⊆Dn

| detT |
−2
n |Dn|

2
n

|K|
2
n |Dn|

2
n

≤ Cn ovr(K)2

The last ingredient we need is the existence of an M -position associated
to a centrally symmetric convex body as it appears, for instance, in [P],
Chapter 7:

Let 0 < p < 2. There exists a linear map u : `n2 → (Rn, ‖ · ‖K) and
universal constants c, c′ > 0 such that for all 1 ≤ k ≤ n,

• ck(u−1), ck(u−1∗) ≤ c√
2−p
(
n
k

)1/p and

• ek(u), ek(u∗) ≤ c′√
2−p
(
n
k

)1/p
where u∗ is the adjoint operator, ck are the Gelfand numbers and ek the
entropy numbers, defined by ck(u−1) = inf{‖u−1|S‖ ; codim(S) < k} and
ek(u) = inf{t > 0; N(u(Dn), tK) ≤ 2k−1} where

N(K,L) = inf{N ∈ N | ∃ x1, . . . xN ,K ⊂ ∪Ni=1(xi + L)}

is the covering number of K by L.

Theorem 3.2. For every symmetric convex body K in Rnand any 1 ≤ k ≤
n− 1 there exists an F ∈ Gn,k such that

vr(PF (K)) ≤ c
(

n

n− k

) 1
2

log
(

1 +
n

n− k

)
where c > 0 is a universal constant.

Proof. Without loss of generality we can assume that |K| = 1. We use
Pisier’s result for fixed 0 < p < 2 and K◦ and denote K1 := u−1(K◦), that
is, we take K◦ into the so called M-position.
By definition of the entropy number we have N(u(Dn), ek(u)K◦) ≤ 2k−1

and so

(3.10) Dn ⊆
2k−1⋃
i=1

xi + ek(u)K1.

By definition of Gelfand numbers, there exists a subspace S of codimension
< k i.e. dimension > n− k, such that

|u−1(x)| ≤ c√
2− p

(n
k

)1/p
∀ x ∈ K◦ ∩ S
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and so it follows (by the definition of K1) that for every 1 ≤ k ≤ n, there
exists a subspace F ∈ Gn,k such that

R(K1 ∩ F ) ≤ c√
2− p

( n

n− k

) 1
p(3.11)

K1 ∩ F ⊆
c√

2− p

( n

n− k

) 1
p
DF(3.12)

From (3.10), we have that

DF = Dn ∩ F ⊆
2k−1⋃
i=1

(
(xi + ek(u)K1) ∩ F

)
so

|DF | ≤
2k−1∑
i=1

|
(
(xi + ek(u)K1) ∩ F

)
| ≤ 2k−1|ek(u)K1 ∩ F |

Hence
1

|K1 ∩ F |
1
k

≤ c|DF |−
1
k ek(u) ≤ c′

√
k√

2− p

(n
k

)1/p

Then there exists a subspace F ∈ Gn,k such that

ovr(K1 ∩ F ) ≤ c

(2− p)

( n

n− k

) 1
p
(n
k

) 1
p

Assume n/2 ≤ k ≤ n − 1, i.e. 1 ≤ n
k ≤ 2 and 2 ≤ n

n−k ≤ n, Thus, taking
p = 2− 1

log(1+ n
n−k ) we obtain that there exists F ∈ Gn,k such that

ovr(K1 ∩ F ) ≤ c log
(

1 +
n

n− k

)( n

n− k

) 1
p ≤ c log

(
1 +

n

n− k

)( n

n− k

) 1
2

For any T ∈ GL(n) we have TK◦ ∩F = T (K◦ ∩ T−1F ). So we have proved
that for every symmetric convex body K in Rn and for any n

2 ≤ k ≤ n− 1
there exists a subspace F of dimension k such that

ovr(K◦ ∩ F ) ≤ c log
(

1 +
n

n− k

)( n

n− k

) 1
2

Observe that for k = n
2 , the latter formula says that there exits F ∈ Gn,n

2

and a constant C such that

ovr(K◦ ∩ F ) ≤ C

If 1 ≤ k ≤ n
2 , take E ∈ Gn,2k and write K0 = K◦ ∩ E. By the previous

observation there exists a subspace F ⊂ E of dimension k such that ovr(K◦∩
F ) = ovr(K0 ∩ F ) ≤ C and hence, since in this case log(1 + n

n−k )
(

n
n−k

) 1
2 is

between two absolute constants, the result also holds. �
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The previous result gives the existence of one k-dimensional subspace F with
the volume ratio of the projection on F bounded by a certain quantity. If
k ≥ n

2 , we can enlarge the existence to random projections (in M -position)
but we pay a penalty in the estimate of the volume ratio. The factor 1

2 in
the hypothesis is irrelevant as long as we assume k ≥ cn. The result is the
following:

Theorem 3.3. Let K be a centrally symmetric convex body in Rn. For any
k ≥ n

2 there exists a position of K such that the subset of Gn,k of subspaces
E satisfying

vr(PE(K)) ≤ C n

n− k
log
(

1 +
n

n− k

)
has Haar probability larger than 1− 2e−

n−k
2

Proof. Let K ⊆ Rn be a symmetric convex body and let 0 < p < 2. We
take K1 = u−1(K◦) in M -position as in the previous Theorem. Moreover,
as we saw above, for any k-dimensional subspace

1

|K1 ∩ E|
1
k

≤ c′
√
k√

2− p

(n
k

)1/p

In order to give an estimate for the diameter of a random section we use
the random matrices method. Let G = (gi,j) a (n−k×n) Gaussian random
matrix, i.e. the gi,j ’s are i.i.d. N(0, 1/n) Gaussian entries (remark that
gi,j = 1√

n
g in law where g is a N(0, 1) Gaussian). Since G is rotationally

invariant it induces the Haar measure in the grasmannian Gn,k, i.e. for any
borelian A ⊆ Gn,k

P{Ker G ∈ A} = µ{E ∈ Gn,k;E ∈ A}

The following fact is well known [DS], Th 2.13.

P
{
‖G : `n2 → `n−k2 ‖ < 3

}
≥ 1− e−

n−k
2 (1)

Also if |x0| = 1 and 0 < η,

P {|Gx0| < η} =
∫
|x|≤η

√
n
e−|x|

2/2 dx

(
√

2π)n−k
≤
(
Cη

√
n

n− k

)n−k
(2)

for some absolute constant C > 0.
We follow [LPTJ] Proposition 2.3. Under same hypothesis as in preceding

proposition we know that the entropy numbers en−k(u−1) ≤ C√
2−p( n

n−k )
1
p for

1 ≤ k ≤ n. In particular it means that

K1 ⊂
2n−k⋃
j=1

xj +
2C√
2− p

(
n

n− k

)1/p

Dn
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Assume that G verifies (1) and the corresponding xj verify (2) for η =

C1

√
n−k
n (C1 to be choosen later). Let x ∈ K1 ∩Ker G. Then for some xj ,

|x| ≤ |x− xj |+ |xj | < |x− xj |+
|Gxj |
η

= |x− xj |+
|G(x− xj)|

η

≤ |x− xj |(1 +
‖G‖
η

) ≤ C√
2− p

(
n

n− k

)1/p+1/2

The preceding estimate is true with probability greater or equal than

1− e−(n−k)/2 − 2(n−kCn−k1 ≥ 1− 2e−(n−k)/2

whenever 2C1 ≤ 1√
e
.

We have proved that, with probability larger than 1− 2e−
n−k

2 ,

R(K1 ∩ E) ≤ C

C1
√

2− p

(
n

n− k

)1/p+1/2

Hence, as before,

ovr(K1 ∩ E) ≤
c
(
n
k

)1/p
(2− p)

(
n

n− k

) 1
p

+ 1
2

with probability larger than 1− 2e−
n−k

2 . Now, if we take p = 2− 1
log(1+ n

n−k )

we have

ovr(K1 ∩ E) ≤ c
(n
k

) 1

2− 1
log(1+ n

n−k ) n

n− k
log
(

1 +
n

n− k

)
with probability larger than 1− 2e−

n−k
2 . Since k ≥ n

2 we obtain the result.
�

Since both K and K◦ are simultaneously in M -position, by the remarks
in the beginning of the section we readily obtain the following

Corollary 3.4. Let K be a centrally symmetric convex body in Rn. For
every 1 ≤ k ≤ n− 1 there exists an E ∈ Gn,k such that

LK∩E ≤ c
√

n

n− k
log
(

1 +
n

n− k

)
where c > 0 is a universal constant. Moreover for any k ≥ n

2 there ex-
ists a position of K such that the subset of Gn,k of subspaces E satisfying
simultaneously

LK∩E ≤ C
n

n− k
log
(

1 +
n

n− k

)
LK◦∩E ≤ c

n

n− k
log(1 +

n

n− k
)

has Haar probability larger than 1− ce−
n−k

2 .
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Dpto. de Matemáticas, Universidad de Zaragoza, 50009 Zaragoza, Spain
E-mail address, (David Alonso): daalonso@unizar.es
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