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Abstract. Let K ⊂ Rn be a centrally symmetric isotropic convex
body. We prove that for random F ∈ Gn,k, and k slowly growing to

infinity, the central section |F⊥ ∩ K|1/k
n−k is almost constant. A simple

approach using standard concentration of measure arguments is given.

1. Introduction and notation

Let K ⊂ Rn be an isotropic symmetric convex body, that is, it is of
volume 1 and there exists a constant LK > 0 called isotropy constant of K
such that L2

K =
∫
K⟨x, θ⟩2 dx, ∀θ ∈ Sn−1.

Since the works of [H], [B] or [MP] we know of the close relation between
the isotropy constant and the size of the central sections of K. It is well
known that for any 1 ≤ k ≤ n there exist c1(k), c2(k) > 0 such that for
every subspace F ∈ Gn,k (the Grassmann space)

c1(k)
LK

≤ |F⊥ ∩ K|1/k
n−k ≤ c2(k)

LK

where | · |m is the Lebesgue measure in the appropiate m dimensional space.
Well known estimates imply c1(k) ≥ c1, [H], and c2(k) ≤ c2k

1/4, [Kl]
where c1, c2 > 0 are absolute numerical constants. These bounds are the
best ones that are valid for every subspace F ∈ Gn,k.

For random sections, much better estimates are possible. The following
result was proved in [ABBP],

There exist absolute constants c1, c2, c3 > 0 with the following property:
If K is an isotropic convex body in Rn and 1 6 k 6 √

n then, the set of
subspaces F ∈ Gn,k such that

c1

LK
6 |K ∩ F⊥|1/k

n−k 6 c2

LK

has Haar probability ≥ 1 − e−c3
n
k
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A consequence of version of the central limit theorem for convex bodies
given in [EK], is an improvement of the previous result. Indeed, the authors
prove that

For ε = 1
nc1 , k ≤ nc2 the set of subspaces F ∈ Gn,k such

1 − ε√
2πLK

≤ |K ∩ F⊥|1/k
n−k ≤ 1 + ε√

2πLK

has Haar probability µ(A) ≥ 1 − c3e
−nc4 .

Their proof uses the strong concentration behavior of the Euclidean norm
on K, [Kl2], and a delicate study of the marginal distribution of some in-
termediate measures, namely the convolution of the uniform measure on K
with an independent gaussian vector.

In this note we use a simple approach to the question. Although the
final result is weaker than the one in [EK], we think the tools used are of
independent interest: First we estimate Lipschitz constant of the section
function F ∈ Gn,k → |F⊥ ∩ K|n−k (Proposition 2.3). For k = 1 this was
proved in [ABP]. Then we apply the concentration of measure phenomenum
on Gn,k (equipped with the right distance (Proposition 2.2)). In this way
we measure the closeness between the section function and its expectation.
Finally, by expressing this expectation as a marginal, we related it to the
marginal of a gaussian distribution. For that final step, we unavoidably
exploit the concentration of the Euclidean norm on K, [Kl2] in the version
stated in [BB]. Our result is
Theorem 2.8. Let K ⊂ Rn isotropic. For all ε > 0, 1 ≤ k ≤ cε log n

(log log n)2
, the

set A of subspaces F ∈ Gn,k such that

(1.1)
1 − ε√
2πLK

≤ |K ∩ F⊥|1/k
n−k ≤ 1 + ε√

2πLK

holds, has probability µ(A) ≥ 1 − c1e
−c2n0.9

.

We denote by | · | the Euclidean norm in the appropiate space, Dn the
Euclidean ball in Rn and by ωn its Lebesgue measure. The surface area of
the unit sphere is |Sn−1| = n ωn. For any k-dimensional subspace F ⊂ Rn

we denote SF = Sn−1 ∩F , the Haar probability on SF by σF , DF = Dn ∩F
and by PF the orthogonal projection onto F . The Haar probability on
the grassmaniann Gn,k is denoted by µ. For T ∈ GL(n), ∥T∥ denotes the

operator norm and ∥T∥HS :=
( n∑

j=1

|T (ej)|2
)1/2

, for (any) orthonormal basis

(ej) of Rn, its Hilbert-Schmidt norm. K◦ denotes the polar body of K. For
any convex body L ⊂ Rn we will write L̃ = L/|L|1/n

n . We will denote
W (K) :=

∫
Sn−1 hK(θ)dσ(θ), the mean width of the convex body K.
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2. The result

In the first part we estimate the Lipschitz constant of the function F → |F⊥∩
K|n−k and also review concentration inequalities with respect to several
natural distances on Gn,k. We start with the latter.

The following lemma constructs a suitable orthonormal basis for two sub-
spaces E and F and will be very useful for our purposes

Lemma 2.1 ([GM], Lemma 4.1). Let E,F ∈ Gn,k such that F⊥ ∩ E =
0. Then there exists u1, . . . uk orthonormal basis of E such that the family
v1, . . . vk given by vj = PF (uj)

|PF (uj)| is an orthonormal basis of F . In particular,

⟨uj , vi⟩ = |PF (uj)| δj
i .

The space Gn,k appears in the literature equipped with a number of different
distances. In the following Proposition, we estimate the equivalence con-
stants between them. It is probably folklore but we include for the reader’s
convenience. The fact that one can move from one distance to another will
be useful while computing the Lipschitz constant and also when considering
the concentration phenomena on Gn,k.

The elements of the orthogonal group O(n) will be denoted by U =
(u1 . . . un) so the columns (ui) form an orthonormal basis in Rn.

Proposition 2.2. For E,F ∈ Gn,k we consider the following distances
d0(E,F ) = max{d(x, SF ) | x ∈ SE}, d is the euclidean distance.
d1(E,F ) = inf{ε > 0 | SE ⊂ SF + εDn, SF ⊂ SE + εDn}

d2(E,F ) = inf{
( k∑

j=1

|uj − vj |2
)1/2

E = ⟨uj⟩k1, F = ⟨vj⟩k1 orthon. basis}

d3(E,F ) = inf{
( n∑

j=1

|uj − vj |2
)1/2

E = ⟨uj⟩k1, F = ⟨vj⟩k1 orthon. basis}

d4(E,F ) = ∥PE − PF ∥HS

d5(E,F ) = inf{∥U−V ∥HS | U, V ∈ O(n), E = ⟨u1 . . . uk⟩, F = ⟨v1 . . . vk⟩}
d6(E,F ) = ∥PE − PF ∥
Then, d2, d3, d4, d5 are equivalent with numerical equivalence constants,

d0 = d1, d1 ≤ d2 ≤
√

2k d1 and d6 ≤ d4 ≤
√

2kd6.

Proof. d0 = d1: d1 is the Hausdorff distance between SE and SF which also
reads d1(E,F ) = max

{
max
x∈SE

d(x, SF ), max
y∈SF

d(y, SE)
}
, so d0 ≤ d1 ≤

√
2 and

it is enough to check that the two inner maxima are equal.
If E ∩ F⊥ ̸= 0 then d0(E,F ) =

√
2. Suppose E ∩ F⊥ = 0.

For any x ∈ SE , y ∈ SF , |x − y|2 = 2 − 2⟨x, y⟩ = 2 − 2⟨PF (x), y⟩. So,

d2(x, SF ) = 2 − 2 sup
y∈SF

⟨PF (x), y⟩ = 2 − 2|PF (x)| =
∣∣x − PF (x)

|PF (x)|
∣∣2. Let

x0 ∈ SE that maximizes d(x, SF ) on SE or equivalently that minimizes
|PF (x)|. Denote y0 = PF (x0)

|PF (x0)| (observe PF (x0) ̸= 0). By the arguments
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in [GM] Lemma 4.1, PF (x0) is orthogonal to E ∩ x⊥
0 and so PEPF (x0) is

parallel to x0. Write PE(y0) = λx0. Then λ = ⟨PE(y0), x0⟩ = ⟨y0, PE(x0)⟩ =
|PF (x0)| and PEPF (x0)

|PEPF (x0)| = x0. Therefore, d(y0, SE) = d(x0, SF ) and so
max{d(y, SE) | y ∈ SF } ≥ max{d(x, SF ) | x ∈ SE}. Exchange E,F and
equality follows.

d1 ≤ d2 ≤
√

2k d1: It is proved in [GM], Lemma 4.1.
1√
2
d2 ≤ d4 ≤

√
2 d2: Let F⊥ ∩ E := E0 and write the orthogonal de-

composition E = E0 ⊕ E1 with E1 ∩ F⊥ = 0. By Lemma 2.1, there exists
an orthonormal basis in E1, (uj), such that vj = PF (uj)

|PF (uj)| is an orthonormal
system in F . Now add vectors to complete an orthonormal basis in E (by
adding vectors in E0) and in F that we also denote as uj and vj . Trivially,

∥PE − PF ∥2
HS ≥

k∑
j=1

|(PE − PF )(uj)|2

If uj ∈ E1 then, since ⟨uj , vj⟩ = |PF (uj)| (Lemma 2.1),

|(PE − PF )(uj)|2 = 1 − |PF (uj)|2 ≥ 1 − |PF (uj)| =
1
2
|uj − vj |2

If uj ∈ E0 and vj ∈ F then |(PE − PF )(uj)|2 = 1. Also, since ⟨uj , vj⟩ = 0
and so |uj − vj |2 = 2.

For the second inequality, let (uj), (vj) be orthonormal basis of E,F ∈
Gn,k we write PE =

∑k
j=1 uj ⊗ uj and PF =

∑k
i=1 vi ⊗ vi and by definition

∥PE − PF ∥2
HS = 2k − 2

k∑
i,j=1

⟨uj , vi⟩2 ≤ 2
k∑

j=1

(1 − ⟨uj , vj⟩2) ≤ 2
k∑

j=1

|uj − vj |2

since 1 − ⟨uj , vj⟩2 ≤ 2(1 − ⟨uj , vj⟩) = |uj − vj |2.
d2 ≤ d3 ≤

√
5d2: By definition d2

3(E,F ) = d2
2(E,F ) + d2

2(E
⊥, F⊥). Now,

d2
2(E

⊥, F⊥) ≤ 2d2
4(E

⊥, F⊥) = 2d2
4(E,F ) ≤ 4d2

2(E,F ). With similar argu-
ments one proves d2 ≤ d5 ≤ 3d2.

d6 ≤ d4 ≤
√

2kd6: For T ∈ GL(n) ∥T∥ ≤ ∥T∥HS ≤
√

dim(T (Rn))∥T∥.
¤

Proposition 2.3. Let K ⊂ Rn isotropic. The function given by Gn,k ∋
E → |E⊥ ∩K|n−k is Lipschitz and for all E,F ∈ Gn,k we have the estimate∣∣ |E⊥ ∩ K|n−k − |F⊥ ∩ K|n−k

∣∣ ≤ (cLk)2k

Lk
K

∥PE − PF ∥HS

where Lk := sup{LM | M ⊂ Rk, convex body isotropic}.

In order to prove it, one more lemma will be used. An equivalent version
of it for k = 1 is due to Busemann.
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Lemma 2.4 ([B]). If K is a convex body and E ∈ Gn,k then the function
given by

E⊥ ∋ θ → ∥θ∥ :=
|θ|

|K ∩ E(θ)|
is a norm on E⊥.

Proof of Proposition 2.3. Suppose F⊥ ∩ E = 0 and let E = ⟨u1 . . . uk⟩, F =
⟨v1 . . . vk⟩ be the orthonormal basis in Lemma 2.1. Denote E⊥

0 = E⊥, E⊥
j =

v⊥1 ∩ · · · ∩ v⊥j ∩ u⊥
j+1 ∩ · · · ∩ u⊥

k and E⊥
k = F⊥. Then

∣∣ |E⊥ ∩ K|n−k − |F⊥ ∩ K|n−k

∣∣ ≤ k∑
j=1

∣∣ |E⊥
j ∩ K|n−k − |E⊥

j−1 ∩ K|n−k

∣∣
Let us estimate (say) the first summand. Set Ē = E⊥ ∩ v⊥1 = E⊥

1 ∩ u⊥
1 .

Then, by Lemma 2.1, E⊥ = Ē ⊕PE⊥(v1) and E⊥
1 = Ē ⊕PE⊥

1
(u1) so we can

apply Lemma 3.4 to Ē∣∣ |E⊥ ∩ K|n−k − |E⊥
1 ∩ K|n−k

∣∣ =

∣∣∣∣∣ |PE⊥(v1)|
∥PE⊥(v1)∥

−
|PE⊥

1
(u1)|

∥PE⊥
1
(u1)∥

∣∣∣∣∣
and since |PE1(u1)| = |⟨u1, v1⟩| = |PE(v1)| and the triangle inequality,∣∣∣∣∣ |PE⊥(v1)|
∥PE⊥(v1)∥

−
|PE⊥

1
(u1)|

∥PE⊥
1
(u1)∥

∣∣∣∣∣ ≤ |PE⊥
1
(u1)|

∥PE⊥
1
(u1)∥ ∥PE⊥(v1)∥

∥PE⊥
1
(u1) − PE⊥(v1)∥

Finally, observe that |PE⊥
1
(u1)−PE⊥(v1)| = (1−⟨u1, v1⟩)|u1−v1| and apply

Lemma ?? to conclude with∣∣ |E⊥ ∩ K|n−k − |E⊥
1 ∩ K|n−k

∣∣ ≤ (1 − ⟨u1, v1⟩)
(1 − ⟨u1, v1⟩2)1/2

|u1 − v1|
(cLk)2k

Lk
K

Since we can also suppose ⟨u1, v1⟩ ≥ 0, the first quotient above is bounded
by 1. So,∣∣ |E⊥ ∩ K|n−k − |F⊥ ∩ K|n−k

∣∣ ≤ √
k
( k∑

j=1

|uj − vj |2
)1/2 (cLk)2k

Lk
K

By the proof of Proposition 2.2,
( k∑

j=1

|uj − vj |2
)1/2 ≤

√
2∥PE − PF ∥HS . In

the general case, if F⊥ ∩ E := E0 then we can write E = E0 ⊕ E1 with
E1 ∩ F⊥ = 0. Choose an orthonormal basis of E0 and proceed as in the
previous case. 2

We recall the following celebrated result by M. Gromov and V. Milman,
see for instance [MS].

Theorem 2.5 (Concentration of measure). There exist absolute constants
c1, c2 > 0 such that
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i) For every A ⊂ Gn,k and every δ > 0

µ(Aδ) ≥ 1 − c1

µ(A)
exp

(
−c2δ

2n
)

where Aδ = {E ∈ Gn,k; ∃ F ∈ A, d5(E,F ) ≤ δ}
ii) For f : Gn,k → R a Lipschitz function with Lipschitz constant σ, that

is |f(E) − f(F )| ≤ σd5(E,F ),

µ {E ∈ Gn,k; |f(E) − E (f)| ≤ a} ≥ 1 − c1 exp
(
−c2a

2n

σ2

)
∀ a > 0

Remark 2.6. If d, d̃ are two distances on Gn,k such that d ≤ Md̃ for some
M > 0 then a concentration inequality for d̃ with bound c1 exp

(
−c2δ

2n
)

implies one for d with bound c1 exp
(
−c2δ2n

M2

)
. Similarly for Lipschitz func-

tions. It is then possible to state concentration inequalities for the different
distances (Proposition 2.2) on Gn,k.

The last main ingredient is the concentration of | · | on K

Theorem 2.7. [Kl2]. Let K ⊂ Rn be an isotropic convex body. Then,

(2.2) |{x ∈ K :
∣∣|x| − √

nLK |
∣∣ > t

√
nLK}|n ≤ c exp(−Cnαtβ)

for all 0 ≤ t ≤ 1 and α = 0.33, β = 3.33.

It was proved by [So] (with sharp exponents α and β) for normalized unit
balls of ℓn

p , 1 ≤ p and in full generality in [Kl2].

As an application of the results we show the announced

Theorem 2.8. Let K ⊂ Rn isotropic. For all ε > 0, 1 ≤ k ≤ ε log n
(log log n)2

, the
set A of subspaces E ∈ Gn,k such that

1 − ε√
2πLK

≤ |E⊥ ∩ K|1/k
n−k ≤ 1 + ε√

2πLK

holds, has probability µ(A) ≥ 1 − c1 exp−c2n
0.9

Proof. Consider the function f : Gn,k → R, f(E) = |E⊥∩K|n−k. By Propo-
sition 2.3 and Theorem 2.5 we have

µ {E ∈ Gn,k; |f(E) − E (f)| ≤ εE (f)} ≥ 1 − c1 exp
(
−

ck
2L

2k
K (E (f))2ε2n

(Lk)2k

)
On the other hand, denote (as in [BB]) FK(t, E) :=

∣∣{x ∈ K : |PE(x)| ≤
t}

∣∣, t ≥ 0, the marginal measure on E of the euclidean ball of radius t and
Γk

K(t) the k-dimensional Gaussian measure (centered with variance L2
K) of

{s ∈ Rk : |s| ≤ t}. Theorem 3.5 in [BB] and Theorem 2.7 readily imply∣∣∣∣∣
∫
Gn,k

FK(t, E) dµ(E)

Γk
K(t)

− 1

∣∣∣∣∣ ≤ c1

n0.09
∀ t ≥ 0
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Taking limits as t → 0 (see Corollary 3.6 in [BB]) yields∣∣∣∣∣∣ E (f)
1

(
√

2πLK)k

− 1

∣∣∣∣∣∣ ≤ c1

n0.09

(
≤ ε

3

)
By the triangle inequality∣∣∣∣∣∣ f(E)

1
(
√

2πLK)k

− 1

∣∣∣∣∣∣ ≤ E (f)
1

(
√

2πLK)k

∣∣∣∣f(E)
E(f)

− 1
∣∣∣∣ +

∣∣∣∣∣∣ E (f)
1

(
√

2πLK)k

− 1

∣∣∣∣∣∣
So, if

∣∣∣∣f(E)
E(f)

− 1
∣∣∣∣ ≤ ε

3
, then

∣∣∣∣∣∣ f(E)
1

(
√

2πLK)k

− 1

∣∣∣∣∣∣ ≤ (1+
ε

3
)
ε

3
+

ε

3
≤ ε and conclude,

using also Lk ≤ ck1/4

µ
{
E ∈ Gn,k;

∣∣f(E) − 1
(
√

2πLK)k

∣∣ ≤ ε

(
√

2πLK)k

}
≥

≥ µ
{

E ∈ Gn,k; |f(E) − E (f)| ≤ ε

3
E (f)

}
≥ 1 − c1 exp

(
−ck

2ε
2n

kk/2

)
The hypothesis on k implies ε ≥ (log log n)2

log n and kk/2 ≪ n0,1, so

µ
{
E ∈ Gn,k;

∣∣f(E) − 1
(
√

2πLK)k

∣∣ ≤ ε

(
√

2πLK)k

}
≥ 1 − c1 exp(−c2n

0.9)

¤
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