

Teoría de máquinas e instalaciones de fluidos

Juan Antonio García Rodríguez y Esteban Calvo Bernad

Prensas de la Universidad de Zaragoza Textos Docentes, 222 2013, 210 p., 17 x 23 cm. 978-84-15770-26-8

14 euros

Este libro recoge los contenidos teóricos que se imparten en la asignatura *Máquinas e Instalaciones de Fluidos* de los grados en Ingeniería de Tecnologías Industriales y en Ingeniería Mecánica que se imparten en la Escuela de Ingeniería y Arquitectura (EINA) de la Universidad de Zaragoza.

Se incluyen también algunos aspectos no tratados en la actual asignatura con la intención de que el texto sirva como una primera aproximación para el tratamiento de las máquinas y de las instalaciones de fluidos.

ÍNDICE

	PREF	FACIO		7		
1.	CON	CEPTO	Y CLASIFICACIÓN DE MÁQUINAS DE FLUIDOS	9		
	1.1.	Desarro	ollo histórico	9		
	1.2.	Interca	mbio de energía	12		
	1.3.	Clasific	cación	14		
	1.4.		nas volumétricas	17		
2.	ALGUNOS CONCEPTOS BÁSICOS DE MECÁNICA					
	DE F		S. APLICACIÓN A TURBINA PELTON	23 23		
	2.1.	; , ;				
	2.2. Herramientas de cálculo integral y diferencial		- ,	25		
		2.2.1.	Derivada de una propiedad Γ asociada a un volumen			
			de control y a un volumen fluido	25		
		2.2.2.	El Teorema de Transporte de Reynolds	26		
		2.2.3.	El teorema de Gauss	26		
		2.2.4.	La derivada sustancial	27		
	2.3. Leyes físicas		ísicas	28		
		2.3.1.	La conservación de la masa: ecuación de continuidad	28		
		2.3.2.	Consecuencias de la ecuación de continuidad	30		
		2.3.3.	La ecuación de la cantidad de movimiento	31		
		2.3.4.	La ecuación del momento angular	34		
		2.3.5.	La ecuación de la energía total	34		
		2.3.6.	La ecuación de la energía mecánica	36		
		2.3.7.	La ecuación de la energía interna	39		
	2.4.	Un ejer	mplo práctico: la turbina Pelton	40		
3.	ANÁ		IMENSIONAL EN TUBERÍAS Y TURBOMÁQUINAS.	45		
	3.1.		ón de conceptos	45		
		3.1.1.	Semejanza geométrica	46		
		3.1.2.	Semejanza cinemática	46		
		3.1.3.	Semejanza dinámica	46		
		3.1.4.	Semejanza física rigurosa	46		
		3.1.5.	Teorema de Vaschy-Buckingham	46		
	3.2.		ción del análisis dimensional al fluio en tuberías	47		

		3.2.1.	Factor de fricción para régimen laminar	48		
	3.3.	Aplica	ción del análisis dimensional a turbomáquinas hidráulicas.	52		
4.	INSTALACIONES DE BOMBEO Y VENTILACIÓN					
	4.1.		namiento de línea de bombeo o ventilación	57		
	4.2.	Conce	otos básicos de cálculo de redes	61		
		4.2.1.	Nociones sobre bombas	63		
		4.2.2.	Arranque de las bombas	64		
	4.3.	Bomba	s en paralelo y en serie	66		
		4.3.1.	Bombas en paralelo	66		
		4.3.2.	Bombas en serie	68		
	4.4.		ciones con nodo común	69		
	4.5.		ción de redes malladas	74		
				74		
			grama de Moodyja de catálogo con curvas características de una bomba	78		
5.			ÓN DE CAUDAL EN INSTALACIONES	7 0		
٥.			O Y VENTILACIÓN	79		
	5.1.		plema de la regulación de caudal	79		
	5.2.	_	ción por modificación de la curva de instalación $H_I(Q)$	80		
		5.2.1.	Válvula de regulación en serie	80		
		5.2.2.	Válvula en derivación (baipás)	82		
		5.2.3.	Comparación entre los métodos con válvula en serie			
			y con válvula en derivación	85		
	5.3.	_	ción por modificación de $H_B(Q)$	86		
		5.3.1.	Variación de la velocidad de rotación de la bomba	86		
		5.3.2.	Cambios en la orientación de los álabes	88		
		5.3.3.	Distribuidor en turbinas	89		
		5.3.4.	Uso de prerrotadores	90		
6.	TRA		RIOS EN INSTALACIONES. GOLPE DE ARIETE	93		
	6.1.	J				
	6.2.	2. Fórmulas de Joukowsky 9				
	6.3		pción del golpe de ariete	101		
	6.4.	Elemei	ntos amortiguadores	104		
7.			A Y CINEMÁTICA DE TURBOMÁQUINAS			
	HIDRÁULICAS					
	7.1.	Aspect	os geométricos	105		
		7.1.1.	Detalles geométricos generales	105		
		7.1.2.	Geometría del rodete	107		
		7.1.3.	Planos característicos	108		

	7.2.	Definiciones cinemáticas, triángulo de velocidades	111	
8.				
	8.1.	Aplicación de la ecuación de la energía total al rodete	115	
	8.2.	Aplicación de la ecuación de la energía mecánica al rodete	117	
	8.3.	Pérdidas hidráulicas	120	
	8.4.	Potencias	124	
	8.5.	Rendimientos	126	
9.	TEORÍA FUNDAMENTAL DE TURBOMÁQUINAS			
	HIDRÁULICAS			
	9.1.	Introducción	129	
	9.2.	Ecuación del momento cinético: teorema de Euler	130	
	9.3.			
	9.4.	Teorema de Euler en sistemas rotantes	134	
		9.4.1. Equivalencia entre sistema fijo y sistema rotante	136	
	9.5.	Teoría 1D de turbomáquinas	137	
		9.5.1. Introducción e hipótesis	137	
		9.5.2. Curva <i>H-Q</i> en aproximación 1D de máquinas radiales	138	
		9.5.3. Aplicación de la teoría 1D a máquinas axiales y mixtas	143	
		9.5.4. Curva característica de intercambio energético neto $H(Q)$	144	
	9.6.	Grado de reacción	149	
	9.7.	Difusores	152	
		9.7.1. Axiales o lineales	153	
		9.7.2. Radiales	153	
4.0		9.7.3. Volutas o difusores tangenciales	156 159	
10.				
		Disco actuador	159 161	
	10.2. Fuerzas de sustentación y resistencia			
11	10.3. Teoría del elemento de pala			
11.		RÍA DE SEMEJANZA EN TURBOMÁQUINAS RÁMETROS ESPECÍFICOS	169	
		Relación de escalas. Modelización	169	
			109	
	11.2.	Semejanza para obtener curvas características de funcionamiento 11.2.1. Variación de la velocidad de giro <i>N</i>	171	
		11.2.1. Variación de la velocidad de giro W	171	
			175	
		11.2.3. Variación de la densidad del fluido ρ	175	
	11 2	11.2.4. Cambio de varias variables	175	
		Parámetros específicos	179	
12		ITACIÓN	183	
14.		Fenómeno de cavitación en turbomáquinas hidráulicas	183	

	12.1.1. Cavitación en bombas	185
	12.1.2. Cavitación en turbinas	187
	12.1.3. Referencia en depósito o pozo	188
	12.1.4. Análisis del NPSHA	189
	12.1.5. Interpretación del NPSHR	191
12.2.	Determinación del inicio de cavitación	192
12.3.	Efectos de la cavitación	192
	12.3.1. Modificación de curvas características	193
	12.3.2. Perturbaciones y daños mecánicos	195
	12.3.3. Criterios del inicio de la cavitación	196
12.4.	Semejanza en cavitación	197
12.5.	Ensayos de cavitación	198
12.6.	Números específicos de cavitación	202
12.7.	La cavitación en el problema de regulación de caudal	203
	12.7.1. Cavitación en la regulación con válvula en baipás	203
	12.7.2. Cavitación en la regulación variando <i>N</i>	204
BIBL	JOGRAFÍA	205